Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 1: 70-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024139

RESUMO

Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas.


Assuntos
Astrócitos/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Glioma/genética , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Humanos , Pioglitazona , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Células Tumorais Cultivadas
2.
Free Radic Biol Med ; 65: 1060-1068, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012919

RESUMO

About 500,000 new cancer patients will develop brain metastases in 2013. The primary treatment modality for these patients is partial or whole brain irradiation which leads to a progressive, irreversible cognitive impairment. Although the exact mechanisms behind this radiation-induced brain injury are unknown, neuroinflammation in glial populations is hypothesized to play a role. Blockers of the renin-angiotensin system (RAS) prevent radiation-induced cognitive impairment and modulate radiation-induced neuroinflammation. Recent studies suggest that RAS blockers may reduce inflammation by increasing endogenous concentrations of the anti-inflammatory heptapeptide angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) binds to the AT(1-7) receptor and inhibits MAP kinase activity to prevent inflammation. This study describes the inflammatory response to radiation in astrocytes characterized by radiation-induced increases in (i) IL-1ß and IL-6 gene expression; (ii) COX-2 and GFAP immunoreactivity; (iii) activation of AP-1 and NF-κB transcription factors; and (iv) PKCα, MEK, and ERK (MAP kinase) activation. Treatment with U-0126, a MEK inhibitor, demonstrates that this radiation-induced inflammation in astrocytes is mediated through the MAP kinase pathway. Ang-(1-7) inhibits radiation-induced inflammation, increases in PKCα, and MAP kinase pathway activation (phosphorylation of MEK and ERK). Additionally Ang-(1-7) treatment leads to an increase in dual specificity phosphatase 1 (DUSP1). Furthermore, treatment with sodium vanadate (Na3VO4), a phosphatase inhibitor, blocks Ang-(1-7) inhibition of radiation-induced inflammation and MAP kinase activation, suggesting that Ang-(1-7) alters phosphatase activity to inhibit radiation-induced inflammation. These data suggest that RAS blockers inhibit radiation-induced inflammation and prevent radiation-induced cognitive impairment not only by reducing Ang II but also by increasing Ang-(1-7) levels.


Assuntos
Angiotensina I/farmacologia , Astrócitos/imunologia , Sistema de Sinalização das MAP Quinases , Fragmentos de Peptídeos/farmacologia , Protetores contra Radiação/farmacologia , Animais , Astrócitos/efeitos da radiação , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fosfatase 1 de Especificidade Dupla/metabolismo , Inflamação/metabolismo , Cultura Primária de Células , Ratos
3.
Int J Radiat Oncol Biol Phys ; 73(2): 499-505, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19084353

RESUMO

PURPOSE: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. MATERIALS AND METHODS: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of gamma rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. RESULTS: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. CONCLUSIONS: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Irradiação Craniana/efeitos adversos , Imidazóis/uso terapêutico , Lesões Experimentais por Radiação/complicações , Tetrazóis/uso terapêutico , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Fracionamento da Dose de Radiação , Avaliação Pré-Clínica de Medicamentos , Masculino , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA