Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 269: 113693, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33326818

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asphodelus tenuifolius Cav. (Asphodelaceae), a wild, terrestrial, annual stemless herb, is widely used in traditional medicine for the treatment of hypertension, diabetes, atherosclerosis and circulatory problems. A previous research study from our laboratory revealed that A. tenuifolius has beneficial effects in reducing blood pressure and improves aortic endothelial dysfunction in chronically glucose fed rats. Despite the fact that A. tenuifolius reduces blood pressure and improves endothelial function in vivo, there are no detailed studies about its possible mechanism of action. AIM OF THE STUDY: This study was designed to provide pharmacological basis and mechanism of action for the traditional use of A. tenuifolius in hypertension and circulatory problems. We explored the vasorelaxant effect of A. tenuifolius and its underlying vasorelaxation mechanism in porcine coronary artery rings. MATERIALS AND METHODS: Aqueous methanolic crude extract of A. tenuifolius was prepared by maceration process and then activity guided fractionation was carried out by using different polarity based solvents. Phytochemical studies were carried out using LC-DAD-MS. Segments of porcine distal coronary artery were set up in a wire myograph for isometric force measurements. Extract/fractions of A. tenuifolius seeds were tested for vasodilator activity by measurement of changes in tone after pre-contraction with the thromboxane mimetic U46619 in the presence or absence of inhibitors of intracellular signaling cascades. RESULTS: Crude extract/fractions of A. tenuifolius produced dose dependent endothelium independent vasorelaxant response in coronary rings, whereas, the butanol fraction of A. tenuifolius (BS-AT) produced the largest relaxation response with 100% relaxation at 1 mg/ml, therefore the mechanism of relaxation of this fraction was determined. The relaxation to BS-AT was unaffected by removal of the endothelium, pre-contraction with KCl, or the presence of the non-selective potassium channel blocker tetraethylammonium, indicating that the relaxation was endothelium-independent, and does not involve activation of potassium channels. BS-AT (1 mg/ml) inhibited the contractile response to calcium,the L-type calcium channel activator BAY K8664,and ionomycin, indicating that it inhibits calcium-induced contractions. The relaxation response to BS-AT was attenuated in the absence of extracellular calcium. However, relaxations to BS-AT were also reduced after deletion of calcium from intracellular stores with cyclopiazonic acid. Incubation with 1 mg/ml BS-AT also inhibited phosphorylation of myosin light chains in homogenates of coronary artery. CONCLUSION: The butanol extract of Asphodelus tenuifolius produces a large endothelium-independent relaxation of the porcine coronary artery through inhibition of calcium-induced contractions. The effect appears to be downstream of calcium influx, possibly through inhibition of myosin light chain kinase. This study supports previous studies demonstrating that A. tenuifolius reduces blood pressure. Future studies will aim to determine the active compounds underlying this response.


Assuntos
Asphodelaceae , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Animais , Vasos Coronários/enzimologia , Relação Dose-Resposta a Droga , Endotélio Vascular/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Técnicas de Cultura de Órgãos , Extratos Vegetais/isolamento & purificação , Suínos , Vasodilatadores/isolamento & purificação
2.
Pharmacol Ther ; 158: 101-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26706238

RESUMO

In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Músculo Liso/efeitos dos fármacos , Animais , Humanos , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA