Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 131: 110762, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152925

RESUMO

Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.


Assuntos
Amidas/farmacologia , Fenóis/farmacologia , Plantas Medicinais/química , Amidas/química , Amidas/isolamento & purificação , Animais , Humanos , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Plant Sci ; 277: 166-176, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466582

RESUMO

BACKGROUND: The production of secondary metabolites through the culture of entire plants is of great interest. Soilless culture, such as hydroponics, enables the control of plant growth and metabolism. Specific environmental conditions must be developed to maximize the productivity of medicinal plants used as efficient natural bioreactors. METHODS: The nutrient solution of newly established hydroponic cultures ofDatura innoxia Mill. were inoculated with Agrobacterium rhizogenes (A.r.) wild strains (TR7, TR107, 11325 or 15834). Growth and the alkaloid contents of roots and aerial parts were analyzed. Axenic cultures were also performed with modified TR7 strains containing the egfp or gus reporter gene. In vitro isolated root cultures enabled the phenological and molecular demonstration of gene transfer. RESULTS: A.r.TR 7 led to a greater improvement in plant secondary metabolism and growth. Positive expression of the reporter genes occurred. Isolation and subculture of some of the roots of these plants showed a hairy root phenotype; molecular tests proved the transfer of bacterial genes into the roots isolated from the plants. CONCLUSIONS: Hyoscyamine and scopolamine productivity is enhanced after A.r. inoculation in the nutrient solution of hydroponic plants. Transformation events occur in the original roots of the plants. This leads to chimeric plants with a part of their roots harboring a hairy root phenotype. Such semi-composite plants could be used for successful specialized metabolite bioproduction in greenhouses.


Assuntos
Agrobacterium/patogenicidade , Alcaloides/metabolismo , Datura/metabolismo , Datura/microbiologia , Datura/crescimento & desenvolvimento , Hidroponia , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA