Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37610274

RESUMO

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Desiminases de Arginina em Proteínas , Fibrinogênio/metabolismo , Colágeno
2.
Arthritis Rheumatol ; 66(10): 2881-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24943488

RESUMO

OBJECTIVE: Gouty arthritis is caused by the precipitation of monosodium urate monohydrate (MSU) crystals in the joints. While it has been reported that mast cells (MCs) infiltrate gouty tophi, little is known about the actual roles of MCs during acute attacks of gout. This study was undertaken to assess the role of MCs in a mouse model of MSU crystal-induced acute arthritis. METHODS: We assessed the effects of intraarticular (IA) injection of MSU crystals in various strains of mice with constitutive or inducible MC deficiency or in mice lacking interleukin-1ß (IL-1ß) or other elements of innate immunity. We also assessed the response to IA injection of MSU crystals in genetically MC-deficient mice after IA engraftment of wild-type or IL-1ß(-/-) bone marrow-derived cultured MCs. RESULTS: MCs were found to augment acute tissue swelling following IA injection of MSU crystals in mice. IL-1ß production by MCs contributed importantly to MSU crystal-induced tissue swelling, particularly during its early stages. Selective depletion of synovial MCs was able to diminish MSU crystal-induced acute inflammation in the joints. CONCLUSION: Our findings identify a previously unrecognized role of MCs and MC-derived IL-1ß in the early stages of MSU crystal-induced acute arthritis in mice.


Assuntos
Artrite Experimental/imunologia , Artrite Gotosa/imunologia , Interleucina-1beta/metabolismo , Mastócitos/metabolismo , Ácido Úrico , Animais , Artrite Experimental/metabolismo , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo
3.
FASEB J ; 26(11): 4710-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22767230

RESUMO

Glycolysis is the initial step of glucose catabolism and is up-regulated in cancer cells (the Warburg Effect). Such shifts toward a glycolytic phenotype have not been explored widely in other biological systems, and the molecular mechanisms underlying the shifts remain unknown. With proteomics, we observed increased glycolysis in disused human diaphragm muscle. In disused muscle, lung cancer, and H(2)O(2)-treated myotubes, we show up-regulation of the rate-limiting glycolytic enzyme muscle-type phosphofructokinase (PFKm, >2 fold, P<0.05) and accumulation of lactate (>150%, P<0.05). Using microRNA profiling, we identify miR-320a as a regulator of PFKm expression. Reduced miR-320a levels (to ∼50% of control, P<0.05) are associated with the increased PFKm in each of these diverse systems. Manipulation of miR-320a levels both in vitro and in vivo alters PFKm and lactate levels in the expected directions. Further, miR-320a appears to regulate oxidative stress-induced PFKm expression, and reduced miR-320a allows greater induction of glycolysis in response to H(2)O(2) treatment. We show that this microRNA-mediated regulation occurs through PFKm's 3' untranslated region and that Ets proteins are involved in the regulation of PFKm via miR-320a. These findings suggest that oxidative stress-responsive microRNA-320a may regulate glycolysis broadly within nature.


Assuntos
Glicólise/fisiologia , MicroRNAs/metabolismo , Estresse Oxidativo/fisiologia , Adenocarcinoma/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfofrutoquinase-1 Muscular/genética , Fosfofrutoquinase-1 Muscular/metabolismo , Reação em Cadeia da Polimerase , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Immunol ; 188(7): 3513-21, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393153

RESUMO

Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/enzimologia , Receptores ErbB/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Animais , Artrite Experimental/enzimologia , Becaplermina , Divisão Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Citocinas/biossíntese , Citocinas/genética , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Receptores ErbB/genética , Cloridrato de Erlotinib , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Quinazolinas/farmacologia , Membrana Sinovial/enzimologia , Membrana Sinovial/patologia
5.
Arthritis Res Ther ; 13(4): R115, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21752263

RESUMO

INTRODUCTION: The aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms. METHODS: PCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production. RESULTS: PCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED(50) of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC(50) = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1ß and IL-6 production in primary monocytes (IC(50) = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD(2), TNF-α, IL-8 and MCP-1. CONCLUSIONS: PCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells, which are important Btk-expressing effector cells in arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Doenças do Complexo Imune/imunologia , Doenças do Complexo Imune/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Piperidinas
6.
J Immunol ; 186(7): 4396-404, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21346230

RESUMO

Rheumatoid arthritis is associated with the development of autoantibodies to citrullinated self-proteins. Citrullinated synovial proteins, which are generated via the actions of the protein arginine deiminases (PADs), are known to develop in the murine collagen-induced arthritis (CIA) model of inflammatory arthritis. Given these findings, we evaluated whether N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide (Cl-amidine), a recently described pan-PAD inhibitor, could affect the development of arthritis and autoimmunity by treating mice in the CIA model with Cl-amidine on days 0-35. Cl-amidine treatment reduced total synovial and serum citrullination, decreased clinical disease activity by ∼50%, and significantly decreased IgG2a anti-mouse type II collagen Abs. Additionally, histopathology scores and total complement C3 deposition were significantly lower in Cl-amidine-treated mice compared with vehicle controls. Synovial microarray analyses demonstrated decreased IgG reactivity to several native and citrullinated epitopes compared with vehicle controls. Cl-amidine treatment had no ameliorative effect on collagen Ab-induced arthritis, suggesting its primary protective mechanism was not mediated through effector pathways. Reduced levels of citrullinated synovial proteins observed in mice treated with Cl-amidine are consistent with the notion that Cl-amidine derives its efficacy from its ability to inhibit the deiminating activity of PADs. In total, these results suggested that PADs are necessary participants in the autoimmune and subsequent inflammatory processes in CIA. Cl-amidine may represent a novel class of disease-modifying agents that modulate aberrant citrullination, and perhaps other immune processes, necessary for the development of inflammatory arthritis.


Assuntos
Amidinas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Inibidores Enzimáticos/uso terapêutico , Hidrolases/antagonistas & inibidores , Imunossupressores/uso terapêutico , Ornitina/análogos & derivados , Animais , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoanticorpos/biossíntese , Autoanticorpos/toxicidade , Citrulina/metabolismo , Colágeno Tipo II/antagonistas & inibidores , Colágeno Tipo II/imunologia , Hidrolases/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos DBA , Ornitina/uso terapêutico , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/metabolismo , Desiminases de Arginina em Proteínas , Índice de Gravidade de Doença , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
7.
Metallomics ; 1(2): 142-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21305107

RESUMO

Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was employed to image deposits of calcium phosphate based crystals in knee cartilage and synovial fluid from arthritic patients. A reaction/collision cell containing hydrogen minimised plasma interferences on calcium and also improved the image quality without significant sensitivity reduction. Areas of high calcium and phosphorus intensities consistent with crystal deposits were observed for both the cartilage and synovial fluid samples. These areas were also characterised by high magnesium and strontium intensities. Distribution patterns of other elements such as copper and sulfur did not correlate with the crystal deposits. Filtered and non-filtered solutions of calcium phosphate crystals grown in synthetic synovial fluid were also imaged as further evidence of crystal deposits. The crystal deposits were detected in the unfiltered solution, and were absent from the filtered solutions.


Assuntos
Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Osteoartrite do Joelho/metabolismo , Cálcio/química , Cartilagem Articular/química , Cartilagem Articular/metabolismo , Humanos , Isótopos/química , Articulação do Joelho/química , Articulação do Joelho/metabolismo , Magnésio/química , Fósforo/química , Estrôncio/química , Líquido Sinovial/química , Líquido Sinovial/metabolismo
8.
Autoimmunity ; 39(8): 675-82, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17178564

RESUMO

Current therapies for rheumatoid arthritis (RA) and other autoimmune diseases non-specifically suppress immune function, and there is great need for fundamental approaches such as antigen-specific tolerizing therapy. In this paper we describe development of antigen-specific tolerizing DNA vaccines to treat collagen-induced arthritis (CIA) in mice, and use of protein microarrays to monitor response to therapy and to identify potential additional autoimmune targets for next generation vaccines. We demonstrate that tolerizing DNA vaccines encoding type II collagen (CII) reduced the incidence and severity of CIA. Atorvastatin, a statin drug found to reduce the severity of autoimmunity, potentiated the effect of DNA vaccines encoding CII. Analysis of cytokines produced by collagen-reactive T cells derived from mice receiving tolerizing DNA encoding CII, as compared to control vaccines, revealed reduced production of the pro-inflammatory cytokines IFN-gamma and TNF-alpha. Arthritis microarray analysis demonstrated reduced spreading of autoantibody responses in mice treated with DNA encoding CII. The development of tolerizing DNA vaccines, and the use of antibody profiling to guide design of and to monitor therapeutic responses to such vaccines, represents a promising approach for the treatment of RA and other autoimmune diseases.


Assuntos
Artrite Reumatoide/prevenção & controle , Análise Serial de Proteínas , Biologia de Sistemas , Vacinas de DNA/uso terapêutico , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Atorvastatina , Autoanticorpos/sangue , Colágeno/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Ácidos Heptanoicos/uso terapêutico , Membro Posterior/imunologia , Membro Posterior/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Interleucina-4/imunologia , Articulações/imunologia , Articulações/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Pirróis/uso terapêutico
9.
J Clin Invest ; 116(10): 2633-42, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16981009

RESUMO

Tyrosine kinases play a central role in the activation of signal transduction pathways and cellular responses that mediate the pathogenesis of rheumatoid arthritis. Imatinib mesylate (imatinib) is a tyrosine kinase inhibitor developed to treat Bcr/Abl-expressing leukemias and subsequently found to treat c-Kit-expressing gastrointestinal stromal tumors. We demonstrate that imatinib potently prevents and treats murine collagen-induced arthritis (CIA). We further show that micromolar concentrations of imatinib abrogate multiple signal transduction pathways implicated in RA pathogenesis, including mast cell c-Kit signaling and TNF-alpha release, macrophage c-Fms activation and cytokine production, and fibroblast PDGFR signaling and proliferation. In our studies, imatinib attenuated PDGFR signaling in fibroblast-like synoviocytes (FLSs) and TNF-alpha production in synovial fluid mononuclear cells (SFMCs) derived from human RA patients. Imatinib-mediated inhibition of a spectrum of signal transduction pathways and the downstream pathogenic cellular responses may provide a powerful approach to treat RA and other inflammatory diseases.


Assuntos
Artrite Experimental/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/uso terapêutico , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Autoantígenos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Benzamidas , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo II/imunologia , Humanos , Mesilato de Imatinib , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Células-Tronco/farmacologia , Líquido Sinovial/citologia , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA