Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Lett ; 45(7): 741-759, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148344

RESUMO

The health benefits of polyunsaturated fatty acids (PUFAs) have encouraged the search for rich sources of these compounds. However, the supply chain of PUFAs from animals and plants presents environmental concerns, such as water pollution, deforestation, animal exploitation and interference in the trophic chain. In this way, a viable alternative has been found in microbial sources, mainly in single cell oil (SCO) production by yeast and filamentous fungi. Mortierellaceae is a filamentous fungal family world-renowned for PUFA-producing strains. For example, Mortierella alpina can be highlighted due to be industrially applied to produce arachidonic acid (20:4 n6), an important component of infant supplement formulas. Thus, the state of the art of strategies to increase PUFAs production by Mortierellaceae strains is presented in this review. Firstly, we have discussed main phylogenetic and biochemical characteristics of these strains for lipid production. Next, strategies based on physiological manipulation, using different carbon and nitrogen sources, temperature, pH and cultivation methods, which can increase PUFA production by optimizing process parameters are presented. Furthermore, it is possible to use metabolic engineering tools, controlling the supply of NADPH and co-factors, and directing the activity of desaturases and elongase to the target PUFA. Thus, this review aims to discuss the functionality and applicability of each of these strategies, in order to support future research for PUFA production by Mortierellaceae species.


Assuntos
Ácidos Graxos Insaturados , Mortierella , Animais , Filogenia , Ácidos Graxos Insaturados/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Mortierella/genética , Mortierella/química , Ácidos Graxos/metabolismo
2.
Bioprocess Biosyst Eng ; 46(3): 393-428, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35943595

RESUMO

Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.


Assuntos
Petróleo , Animais , Biodegradação Ambiental , Ecossistema , Hidrocarbonetos , Compostos Orgânicos
3.
Braz. arch. biol. technol ; 62: e19180337, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1019545

RESUMO

Abstract Tailor made enzymatic preparation must be design to hydrolyze efficiently plant biomass, once that each plant biomass possesses a distinct cell wall composition. Most of actinomycetes used for plant cell wall degradation are focused on the cellulases and xylanases production. However, a wide range of enzymes must be produced for an efficient degradation of lignocellulose materials. During the last decade several unusual environments were studied to obtain strains that produce glycohydrolases with innovator characteristics. In this context, the present work concerned the selection of endophytic actinomycetes as producers of hemicellulases and related enzymes with different enzymatic profiles, for use in the deconstruction of lignocellulosic biomass. A total of 45 Brazilian actinomycetes previously isolated from plants (endophytics) and soil were prospected for hemicellulases and β-glucosidase production. Four strains highlighted for hemicellulase production (DR61, DR63, DR69 and DR66) and were selected for cultivation under other inductors substrates (xylan and pectin). All strains belong to Streptomyces genera and have their extracts tested for degradation of several hemicellulolytic substrates. The strains presented different glicohydrolyse enzymes profiles mainly for xylans and glucans that can be used for specific formulations of enzymes applied on the biomass deconstruction, principally on sugar cane bagasse.


Assuntos
Celulase , Actinobacteria , Biomassa , Pectinas , Saccharum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA