Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Emerg Med ; 74: 196.e5-196.e7, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833202

RESUMO

Treating shoulder dislocations is common in the emergency department and often requires procedural sedation. The use of acupuncture for treatment of chronic pain has been shown to be successful in various outpatient settings, and some EDs have recently incorporated acupuncture as an analgesia adjunct for chronic painful conditions to avoid opioid therapy. Limited data describe acupuncture to facilitate ED procedures. Here we present two cases of acute shoulder dislocation that were successfully treated with acupuncture as an alternative to parenteral pharmacologic procedural sedation. A 50 year old male sustained an anterior shoulder dislocation after an altercation, and a 59 year old female sustained an anterior dislocation after a fall. Instead of using conventional pharmacologic sedation and analgesia during shoulder reduction, both were treated with acupuncture in the ED. Reduction in both cases was rapid, safe, and avoided use of any parenteral medications, procedural sedation monitoring, or prolonged nurse observation. Using acupuncture as alternative to opioids for ED procedures deserves future study for orthopedic and other common ED procedures.


Assuntos
Terapia por Acupuntura , Anestesia , Luxação do Ombro , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Luxação do Ombro/terapia , Ombro , Dor , Analgésicos Opioides , Serviço Hospitalar de Emergência , Sedação Consciente/métodos
2.
J Neuroendocrinol ; 35(3): e13239, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863859

RESUMO

The third ventricle (3 V) wall of the tuberal hypothalamus is composed of two types of cells; specialized ependymoglial cells called tanycytes located ventrally and ependymocytes dorsally, which control the exchanges between the cerebrospinal fluid and the hypothalamic parenchyma. By regulating the dialogue between the brain and the periphery, tanycytes are now recognized as central players in the control of major hypothalamic functions such as energy metabolism and reproduction. While our knowledge of the biology of adult tanycytes is progressing rapidly, our understanding of their development remains very incomplete. To gain insight into the postnatal maturation of the 3 V ependymal lining, we conducted a comprehensive immunofluorescent study of the mouse tuberal region at four postnatal ages (postnatal day (P) 0, P4, P10, and P20). We analyzed the expression profile of a panel of tanycyte and ependymocyte markers (vimentin, S100, connexin-43 [Cx43], and glial fibrillary acidic protein [GFAP]) and characterized cell proliferation in the 3 V wall using the thymidine analog bromodeoxyuridine. Our results show that most changes in marker expression occur between P4 and P10, with a switch from a 3 V mostly lined by radial cells to the emergence of a tanycytic domain ventrally and an ependymocytic domain dorsally, a drop in cell proliferation and increased expression of S100, Cx43, and GFAP that acquire a mature profile at P20. Our study thus identifies the transition between the first and the second postnatal week as a critical time window for the postnatal maturation of the 3 V wall ependymal lining.


Assuntos
Terceiro Ventrículo , Camundongos , Animais , Masculino , Terceiro Ventrículo/metabolismo , Conexina 43/metabolismo , Neuroglia/metabolismo , Hipotálamo/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células
3.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795451

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Astrócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Maturidade Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA