Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118188, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608797

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY: This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS: The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS: The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 µg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS: JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.


Assuntos
Bothrops , Venenos de Crotalídeos , Emulsões , Necrose , Extratos Vegetais , Folhas de Planta , Cicatrização , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cicatrização/efeitos dos fármacos , Folhas de Planta/química , Venenos de Crotalídeos/toxicidade , Camundongos , Masculino , Necrose/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/patologia , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células 3T3 , Hemólise/efeitos dos fármacos , Ratos Wistar , Nanopartículas/química , Serpentes Peçonhentas
2.
Poult Sci ; 103(6): 103668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631232

RESUMO

Plant extracts are increasingly recognized as potential prophylactic agents in poultry production due to their diverse bioactive properties. This study investigated the phytochemical and biological properties of Libidibia ferrea (L. ferrea), a plant species native to the Caatinga region of northeastern Brazil. The aim of this study was to identify secondary metabolites and to demonstrate the antimicrobial, antioxidant and protective effects of the plant extract. Three extracts were produced: EHMV, a hydroalcoholic extract from the maceration of pods, and EEMC and EEMV ethanolic extracts from the maceration of peels and pods, respectively, from L. ferrea. High-performance liquid chromatography (HPLC-MS/MS) and atomic absorption spectroscopy (AAS) were used to characterize the metabolites and metals. The antimicrobial activity against Salmonella Galinarum (SG), Salmonella pullorum (SP), Salmonella Heidelberg (SH) and Avian pathogenic Escherichia coli (APEC) was evaluated alone and in combination with probiotic bacteria (Bacillus velenzensis) using agar diffusion and the bactericidal minimum concentration (CBM). The antioxidant potential of the extracts was evaluated in 5 in vitro assays and 6 assays in 3t3 cells. The toxicity of EHMV was tested, and its ability to combat SP infection was demonstrated using a chicken embryo model. The results showed that EHMV exhibited significant antimicrobial activity. The combination of EHMV with BV had synergistic effects, increased antimicrobial activity and induced bacterial sporulation. Composition analysis revealed the presence of 8 compounds, including tannins and phenolic compounds. In vitro antioxidant tests demonstrated that total antioxidant capacity(TAC) activity was increased, and the extract had strong reducing power and notable metal chelating effects. Analysis of 3T3 cells confirmed the protective effect of EHMV against oxidative stress. Toxicity assessments in chicken embryos confirmed the safety of EHMV and its protective effect against SP-induced mortality. EHMV from L. ferrea is rich in proteins and contains essential metabolites that contribute to its antimicrobial and antioxidant properties. When associated with probiotic bacteria such as B. velezensis, this extract increases the inhibition of SH, SG, SP, and APE. The nontoxic nature of EHMV and its protective effects on chicken embryos make it a potential supplement for poultry.


Assuntos
Antioxidantes , Extratos Vegetais , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Galinhas , Embrião de Galinha , Brasil , Salmonella/efeitos dos fármacos , Salmonella/fisiologia , Camundongos , Escherichia coli/efeitos dos fármacos
3.
Nat Prod Res ; : 1-9, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041623

RESUMO

Lippia origanoides essential oil (LOEO) is extensively utilised as food preservative due to its antioxidant and antibacterial activities. In this study, the antioxidant and anti-ageing effects of LOEO was investigated in vivo using the nematode Caenorhabditis elegans. The gas chromatography-mass spectrometry analysis indicated that the main components of LOEO are carvacrol and thymol. LOEO treatment improved physiological parameters such as pharyngeal pumping, locomotion and body size indicating that is not toxic to C. elegans. LOEO treatment showed antioxidant effect in C. elegans by reducing endogenous ROS (Reactive Oxygen Species) production and increasing their survival under oxidative stress. Finally, LOEO treatment significantly extended C. elegans lifespan and alleviated the paralysis induced by ß-amyloid peptide overexpression in the muscle. This work demonstrates for the first time LOEO antioxidant and anti-ageing properties on an organism level providing a valuable proof of principle to support further studies in the development of nutraceuticals or antioxidant phytotherapy.

4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958868

RESUMO

Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 µg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.


Assuntos
Antioxidantes , Cicatrização , Antioxidantes/farmacologia , Estresse Oxidativo , Fenóis/farmacologia , Linhagem Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Etanol/farmacologia , Folhas de Planta
5.
Nutrients ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686887

RESUMO

Medicinal plants, such as Talisia esculenta, are rich in antioxidant biomolecules, which are used in the treatment and prevention of many diseases. The antioxidant potential of T. esculenta extracts obtained from leaves and fruit peels was investigated using biochemical and 3T3 cell line assays as well as in vivo assays using an organism model Tenebrio molitor. Four extracts were tested: hydroethanolic extracts from leaves (HF) and from fruit peels (HC), and infusion extracts from leaves (IF) and from fruit peels (IC). The biochemical assays demonstrated an antioxidant capacity verified by TAC, reducing power, DPPH, and copper chelating assays. None of the extracts exhibited cytotoxicity against 3T3 cells, instead offering a protection against CuSO4-induced oxidative stress. The antioxidant activity observed in the extracts, including their role as free radical scavengers, copper chelators, and stress protectors, was further confirmed by T. molitor assays. The CLAE-DAD analysis detected phenolic compounds, including gallic acid, rutin, and quercitrin, as the main constituents of the samples. This study highlights that leaf and fruit peels extracts of T. esculenta could be effective protectors against ROS and copper-induced stress in cellular and invertebrate models, and they should be considered as coadjutants in the treatment and prevention of diseases related to oxidative stress and for the development of natural nutraceutical products.


Assuntos
Produtos Biológicos , Sapindaceae , Animais , Camundongos , Antioxidantes/farmacologia , Cobre , Extratos Vegetais/farmacologia
6.
Food Chem ; 414: 135645, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821920

RESUMO

Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.


Assuntos
Extratos Vegetais , Taninos , Taninos/química , Polifenóis , Suplementos Nutricionais , Fenóis
7.
PLoS One ; 18(1): e0275835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630475

RESUMO

An increase in the incidence of arboviral, microbial and parasitic infections, and to disorders related to oxidative stress has encouraged the development of adjuvant therapies based on natural formulations, such as those involving plant extracts. Thus, to expand the repertoire of the available therapeutic options, this study aimed to describe the versatility of Tephrosia toxicaria (Sw.) (Pers., 1807) extracts for the control of arbovirus vectors, as well as their antioxidant, antileishmanial, and antimicrobial potential. Among the aqueous and hydroethanolic extracts obtained, the hydroethanolic extract from roots (RHA) was identified as the most active larvicide extract demonstrating, respectively, the lowest lethal concentration (mg/mL) for 50%, 90% and 99% of Aedes aegypti (L., 1762) and Aedes albopictus (S., 1894) larvae, observed at 24 h (0.33, 0.84 and 1.80; 0.32, 0.70 and 1.32) and 48 h (0.17, 0.51 and 1.22; 0.26, 0.47 and 0.78) post-exposure. Field assays revealed that RHA (0.84 mg/mL) is a potential oviposition deterrent, reducing egg-laying by approximately 90%. RHA (0.1 mg/mL) also exhibited antioxidant activity for the following tests: total antioxidant capacity (286.86 mg AAE/g), iron (87.16%) and copper (25.64%) chelation, and superoxide scavenging (10%). In the cell culture assays, RHA (0.1 mg/mL) promoted regeneration of metabolic activity (92% cell viability) in cells exposed to oxidative stress. Furthermore, RHA displayed weak antileishmanial activity (IC50 = 3.53 mg/mL) against Leishmania amazonensis and not exhibit antimicrobial activity. The extraction favored the concentration of carbohydrates in RHA, in addition to lectins and protease inhibitors, with molecular masses estimated between 10 and 24 kDa. Cytotoxicity and phytotoxicity analyses of RHA suggested its biosecurity. Thus, RHA is a multivalent extract with insecticide and antioxidant properties at low and safe concentrations. However, others studies on its indirect toxic effects are ongoing to ensure the complete safety of RHA.


Assuntos
Aedes , Anti-Infecciosos , Antiprotozoários , Tephrosia , Animais , Feminino , Antioxidantes/farmacologia , Mosquitos Vetores , Extratos Vegetais/toxicidade , Antiprotozoários/farmacologia , Anti-Infecciosos/farmacologia
8.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678788

RESUMO

Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 µg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.

9.
Nutrients ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296993

RESUMO

Depression is a psychiatric disorder affecting the lives of patients and their families worldwide. It is an important pathophysiology; however, the molecular pathways involved are not well understood. Pharmacological treatment may promote side effects or be ineffective. Consequently, efforts have been made to understand the molecular pathways in depressive patients and prevent their symptoms. In this context, animal models have suggested phytochemicals from medicinal plants, especially phenolic acids, as alternative treatments. These bioactive molecules are known for their antioxidant and antiinflammatory activities. They occur in some fruits, vegetables, and herbal plants. This review focused on phenolic acids and extracts from medicinal plants and their effects on depressive symptoms, as well as the molecular interactions and pathways implicated in these effects. Results from preclinical trials indicate the potential of phenolic acids to reduce depressive-like behaviour by regulating factors associated with oxidative stress, neuroinflammation, autophagy, and deregulation of the hypothalamic-pituitary-adrenal axis, stimulating monoaminergic neurotransmission and neurogenesis, and modulating intestinal microbiota.


Assuntos
Antioxidantes , Plantas Medicinais , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Plantas Medicinais/química , Extratos Vegetais/farmacologia
10.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297083

RESUMO

The early diagnosis of and intervention in vitamin B12 deficiency in exclusively breastfed infants by mothers with low vitamin B12 is crucial in preventing possible irreversible neurologic damage, megaloblastic anemia, and failure to thrive. We assess the usefulness of the early detection of asymptomatic B12 deficiency related to acquired conditions and highlight the importance of monitoring serum vitamin B12 levels during pregnancy. We describe demographic, clinical, dietary, and biochemical data, including the evolution of a vitamin B12 deficiency's functional biomarkers. We enrolled 12 newborns (5 males) with an age range of 1-2 months old that were exclusively breastfed and asymptomatic. These cases were referred to our metabolic unit due to alterations in expanded newborn screening: high levels of methylmalonic acid and/or total homocysteine (tHcy). All mothers were under a vegetarian diet except three who had abnormal B12 absorption, and all presented low or borderline serum B12 level and high plasma levels of tHcy. Supplementation with oral vitB12 re-established the metabolic homeostasis of the mothers. In infants, therapy with an intramuscular injection of 1.0 mg hydroxocobalamin led to the rapid normalization of the metabolic pattern, and a healthy outcome was observed. Acquired B12 deficiency should be ruled out before proceeding in a differential diagnosis of cobalamin metabolism deficits, methylmalonic acidemia, and homocystinuria.


Assuntos
Ácido Metilmalônico , Deficiência de Vitamina B 12 , Lactente , Gravidez , Masculino , Feminino , Recém-Nascido , Humanos , Hidroxocobalamina , Saúde do Lactente , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/tratamento farmacológico , Vitamina B 12 , Diagnóstico Precoce , Biomarcadores , Homocisteína
11.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290635

RESUMO

Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.

12.
Mar Drugs ; 20(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36005493

RESUMO

Antioxidant compounds decrease the amount of intracellular reactive oxygen species (ROS) and, consequently, reduce the deleterious effects of ROS in osteoblasts. Here, we modified a 21 kDa fucoidan (FucA) with gallic acid (GA) using the redox method, to potentiate its antioxidant/protective capacity on pre-osteoblast-like cells (MC3T3) against oxidative stress. The 20 kDa FucA-GA contains 37 ± 3.0 mg GA per gram of FucA. FucA-GA was the most efficient antioxidant agent in terms of total antioxidant capacity (2.5 times), reducing power (five times), copper chelation (three times), and superoxide radical scavenging (2 times). Exposure of MC3T3 cells to H2O2 increased ROS levels and activated caspase-3 along with caspase-9. In addition, the cell viability decreased approximately 80%. FucA-GA also provided the most effective protection against oxidative damage caused by H2O2. Treatment with FucA-GA (1.0 mg/mL) increased cell viability (~80%) and decreased intracellular ROS (100%) and caspase activation (~80%). In addition, Fuc-GA (0.1 mg/mL) abolished H2O2-induced oxidative stress in zebra fish embryos. Overall, FucA-GA protected MC3T3 cells from oxidative stress and could represent a possible adjuvant for the treatment of bone fragility by counteracting oxidative phenomena.


Assuntos
Antioxidantes , Ácido Gálico , Animais , Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Polissacarídeos , Espécies Reativas de Oxigênio
13.
Int J Nanomedicine ; 16: 7353-7367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754189

RESUMO

BACKGROUND: Although bullfrog oil (BFO) exerts anti-inflammatory effects, it has undesirable properties limiting its use. METHODOLOGY: BFO nanocapsules (BFONc) were produced through nanoprecipitation, and their physicochemical and morphological properties were characterized. To evaluate the biocompatibility of the formulation, a mitochondrial activity evaluation assay was conducted, and cell uptake was assessed. The in vitro anti-inflammatory activity was evaluated by measuring reactive oxygen species (ROS), nitric oxide (NO), type-6 interleukin (IL-6), and tumor necrosis factor (TNF) levels. The in vivo anti-inflammatory effect was assessed by quantifying myeloperoxidase (MPO) levels using the carrageenan-induced paw edema model. RESULTS: BFONc showed a particle size of 233 ± 22 nm, a polydispersity index of 0.17 ± 0.03, and a zeta potential of -34 ± 2.6mV. BFONc revealed remarkable biocompatibility and did not induce changes in cell morphology. Furthermore, BFONc decreased ROS levels by 81 ± 4%; however, NO level increased by 72 ± 18%. TNF and IL-6 levels were reduced by approximately 10% and 90%, respectively. Significant in vivo anti-inflammatory activity was observed compared to dexamethasone. MPO levels were reduced up to 2 MPOs/mg. CONCLUSION: Taken together, the results pointed out the remarkable biocompatibility and anti-inflammatory effects of BFONc.


Assuntos
Nanocápsulas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Edema/tratamento farmacológico , Nanocápsulas/uso terapêutico , Extratos Vegetais/uso terapêutico , Rana catesbeiana , Fator de Necrose Tumoral alfa/uso terapêutico
14.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768954

RESUMO

Reactive oxygen species (ROS) are aerobic products generated during cellular respiration, but in the case of oxidative stress, they become key factors in the development of inflammatory processes and chronic diseases such as diabetes and rheumatoid arthritis. In this work, Euterpe oleracea oil (EOO), as well as the complexes produced by slurry (S) and kneading (K), were analyzed for antioxidant capacity in vitro, while only the ß-cyclodextrin complex obtained by kneading (EOO-ßCD-K), which showed better complexation, was selected for anti-inflammatory assays in vivo. In the scavenging activity of OH·, the hydroxypropyl-ß-cyclodextrin complex obtained by kneading (EOO-HPßCD-K) exhibited an activity 437% higher than the pure oil. In the paw edema assay, EOO-ßCD-K reduced edema by 200% and myeloperoxidase (MPO) activity by 112%. In an air pouch model, this treatment showed a reduction in leukocyte, MPO, and Interleukin-1ß (IL-1ß) levels; meanwhile those of glutathione and IL-10 were increased, demonstrating its ability to potentiate the anti-inflammatory effect of EOO.


Assuntos
Euterpe/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Edema/tratamento farmacológico , Feminino , Técnicas In Vitro , Masculino , Camundongos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Óleos de Plantas/administração & dosagem , Plantas Medicinais/química , beta-Ciclodextrinas/administração & dosagem
15.
Oxid Med Cell Longev ; 2021: 3043720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986915

RESUMO

Commiphora leptophloeos is widely used in folk medicine without any scientific basis. Considering this, the aim of this study was to evaluate the chemical profile and the antioxidant activity of C. leptophloeos leaf extracts using in vitro and in vivo assays. Six extracts were obtained from fresh leaves using a serial extraction (nonpolar to polar solvents). These extracts were first evaluated with the presence of phytochemical compounds using the methods thin layer chromatography (TLC), ultrahigh performance liquid chromatography (UHPLC-DAD), and high performance liquid chromatography, both with diode array detection (HPLC-DAD). Based on the compounds identified, it was used some bioinformatics tools in order to identify possible pathway and gene targets. After that, the antioxidant capacity from these extracts was analysed by in vitro assays and in vivo assays using Caenorhabditis elegans model. Phytochemical analyses showed the presence of polyphenols, such as rutin, vitexin, and quercetin diglycosides in all extracts, especially in ethanol extract (EE) and methanol extract (EM). Bioinformatics analysis showed these polyphenols linked to antioxidant pathways. Furthermore, EE and EM displayed a high antioxidant capacity in DPPH and superoxide radical scavenging assays. They also had no effect on cell viability for 3T3 nontumour cell. However, for B16-F10 tumour cell lines, these extracts had toxicity effect. In vivo assays using C. elegans N2 showed that EE was not toxic, and it did not affect its viability nor its development. Besides, EE increased worm survival under oxidative stress and reduced intracellular reactive oxygen species (ROS) levels by 50%. Thus, C. leptophloeos EE displayed an important in vitro and in vivo antioxidant capacity. The EE extract has polyphenols, suggesting that these compounds may be responsible for a myriad of biological activities having this potential to be used in various biotechnological applications.


Assuntos
Antioxidantes/uso terapêutico , Commiphora/química , Extratos Vegetais/química , Folhas de Planta/química , Antioxidantes/farmacologia
16.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011403

RESUMO

Animal chitosan (Chit-A) is gaining more acceptance in daily activities. It is used in a range of products from food supplements for weight loss to even raw materials for producing nanoparticles and hydrogel drug carriers; however, it has low antioxidant activity. Fungal oligochitosan (OChit-F) was identified as a potential substitute for Chit-A. Cunninghamella elegans is a fungus found in the Brazilian savanna (Caatinga) that produces OligoChit-F, which is a relatively poorly studied compound. In this study, 4 kDa OChit-F with a 76% deacetylation degree was extracted from C. elegans. OChit-F showed antioxidant activity similar to that of Chit-A in only one in vitro test (copper chelation) but exhibited higher activity than that of Chit-A in three other tests (reducing power, hydroxyl radical scavenging, and iron chelation). These results indicate that OChit-F is a better antioxidant than Chit-A. In addition, Chit-A significantly increased the formation of calcium oxalate crystals in vitro, particularly those of the monohydrate (COM) type; however, OChit-F had no effect on this process in vitro. In summary, OChit-F had higher antioxidant activity than Chit-A and did not induce the formation of CaOx crystals. Thus, OChit-F can be used as a Chit-A substitute in applications affected by oxidative stress.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Cunninghamella/metabolismo , Oligossacarídeos/biossíntese , Oligossacarídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Oxalato de Cálcio/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Ethnopharmacol ; 264: 113229, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Commiphora leptophloeos (Mart.) J.B. Gillett (Burseraceae) is a medicinal plant native from the brazilian northeast caatinga biome, known popularly as "imburana" or "imburana-de-cambão". The leaves of C. leptophloeos are widely used in folk medicine in the treatment of various inflammatory disorders. However, there is no scientific evidence to justify their popular use. AIM OF THE STUDY: This approach aimed to characterize the phytochemical profile of hydroethanolic leaf extract, as well as evaluate the anti-inflammatory and antioxidant potential activity and to investigate the acute toxicity with pre-clinical in vitro and in vivo methodologies. MATERIALS AND METHODS: The phytochemical profile was characterized by UPLC-MS and FIA-ESI-IT-MS/MS. The in vitro anti-inflammatory potential the hydroethanolic extract of C. leptophloeos (1, 10, 100 and 200 µg/mL) was investigated by lipopolysaccharide (LPS) induced nitric oxide assay, in order to analyze the potential decrease of nitric oxide (NO) production. For carrageenan-induced paw edema and zymosan-induced air pouch models, the extract (100, 200 and 400 mg/kg) was administrated by intragastric gavage (i.g.) route and used for evaluating the anti-inflammatory effect in vivo. Related to the first animal model, the antiedematogenic activity and myeloperoxidase (MPO) levels could be investigated. In addition, the zymosan-induced air pouch model allowed the analyses of leukocytes migration, total MPO, malondialdehyde (MDA) and cytokines (TNF-α and IL-10) levels. The toxicity in vitro of the extract (1, 10, 100 and 200 µg/mL) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acute toxicity in vivo was tested using the extract at 2000 mg/kg by i. g. route. RESULTS: The phytochemical analyses of C. leptophloeos leaf extract pointed the presence of six glycosylated flavonoids, identified as orientin, isoorientin, vitexin and isovitexin, quercetrin and isoquercitrin. A decrease of NO in vitro was noticed by the use of the extract in the LPS-induced nitric oxide assay and an expressive reduction of the paw-edema followed by a decrease of myeloperoxidase activity at doses of 200 and 400 mg/kg. The zymosan-induced air pouch model indicated that the extract, in all doses, significantly reduced the leukocytes migration, total protein concentration, MPO and MDA levels. The levels of cytokines were verified by the administration of extract in this model, revealing a lower of TNF-α level and an increase of the IL-10 production. In the toxicity study, the MTT assay evidenced no cytotoxicity of the tested concentrations and acute toxicity in vivo test did not result in any sign of toxicity and mortality or significant changes on the biochemical parameters. CONCLUSION: Based on these results, is possible suggest that the anti-inflammatory activity revealed in this approach can be related to the modulating the level of cytokine, decrease of TNF-α, increase of IL-10 in vivo and also the inhibition of the production of nitric oxide RAW 264.7 activated by LPS. These results demonstrate the potential anti-inflammatory effect C. leptophloeos leaf extrat in inflammatory in vivo models, supporting its use in folk medicine for treatment of inflammatory diseases. Finally, glycosylated flavonoids can be responsible, at least in part, for this effect.


Assuntos
Anti-Inflamatórios/uso terapêutico , Commiphora , Edema/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Folhas de Planta , Espectrometria de Massas em Tandem/métodos , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Edema/metabolismo , Feminino , Masculino , Camundongos , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação
18.
Biomolecules ; 10(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053674

RESUMO

Agave sisalana agro-industrial residue has considerable potential against damage associated with oxidative stress and skin aging. This study aims to demonstrate, in vitro and in vivo, the potential of Agave sisalana agro-industrial residue as a safe and effective alternative for the prevention of damage caused by oxidative stress and aging. The antioxidant activity was evaluated in vitro (total antioxidant capacity, reducing power, DPPH radical scavenging, metal chelating (Fe2+ and Cu2+), and hydroxyl radical scavenging) and in vivo using the Caenorhabditis elegans organism model. The extract showed in vitro antioxidant activity in all tests performed. Tests with C. elegans showed that the extract was able to reduce the intracellular levels of reactive oxygen species (ROS) and increase the survival rate of worms. A downregulation of gst-4::GFP expression suggests a direct action against free radicals. Agave sisalana agro-industrial residue extract (AsRE) can therefore be considered as a source of antioxidant biomolecules, and the use of this agro-industrial residue in a new production process can lead to sustainability and socioeconomic development.


Assuntos
Agave/química , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Animais Geneticamente Modificados , Antioxidantes/isolamento & purificação , Biomassa , Caenorhabditis elegans , Quelantes/isolamento & purificação , Quelantes/farmacologia , Produtos Agrícolas , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Técnicas In Vitro , Resíduos Industriais , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo
19.
Oxid Med Cell Longev ; 2020: 3928706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101587

RESUMO

The genus Coccoloba is widely used in traditional folk medicine, but few scientific data exist for this genus. The goal of this study was to characterise the chemical composition and antioxidant activities of C. alnifolia leaf extracts using in vitro and in vivo assays. Six extracts were obtained: hexane (HE), chloroform (CE), ethanol (EE), methanol (ME), water end extract (WEE), and water extract (WE). Thin-layer chromatography (TLC) analysis showed the presence of phenols, saponins, terpenes, and flavonoids. In vitro assays demonstrated substantial antioxidant potential, especially for polar extracts (EE, ME, WEE, and WE). Moreover, no toxic effects were observed on mammalian cell lines for most of the extracts at the concentrations evaluated. The nematode Caenorhabditis elegans was also used as an in vivo model for testing antioxidant potential. The EE and WE were chosen, based on previously obtained results. It was observed that neither the EE nor the WE had any toxic effect on C. elegans development. Additionally, the antioxidant potential was evaluated using tert-butyl hydroperoxide as a stressor agent. The EE increased the life span of C. elegans by 28% compared to that of the control, and the WE increased the range to 39.2-41.3%. High-performance liquid chromatography (HPLC-DAD) showed the presence of gallic acid, p-coumaric acid, and vitexin in the WE. Therefore, in vitro and in vivo data demonstrated the antioxidant potential of C. alnifolia extracts and their possible biotechnological applications.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polygonaceae/química , Animais , Antioxidantes/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Camundongos , Óvulo/efeitos dos fármacos , Óvulo/crescimento & desenvolvimento , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Polygonaceae/metabolismo
20.
J Tissue Eng Regen Med ; 14(12): 1792-1803, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010118

RESUMO

This study aimed to verify the efficacy of low-level laser irradiation (LLLI) on the proliferation of MC3T3-E1 preosteoblasts cultured on poly(lactic acid) (PLA) films. The produced films were characterized by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy, differential scanning calorimetry, and X-ray diffraction. The MC3T3-E1 cells were cultured as three different groups: Control-cultured on polystyrene plastic surfaces; PLA-cultured on PLA films; and PLA + Laser-cultured on PLA films and submitted to laser irradiation (660 nm; 30 mW; 4 J/cm2 ). Cell proliferation was analyzed by Trypan blue and Alamar blue assays at 24, 48, and 72 h after irradiation. Cell viability was assessed by Live/Dead assay, apoptosis-related events were evaluated by Annexin V/propidium iodide (PI) expression, and cell cycle events were analyzed by flow cytometry. Cell morphology on the surface of films was assessed by SEM. Cell counting and biochemical assay results indicate that the PLA + Laser group exhibited higher proliferation (p < 0.01) when compared with the Control and PLA groups. The Live/Dead and Annexin/PI assays indicate increased cell viability in the PLA + Laser group that also presented a higher percentage of cells in the proliferative cell cycle phases (S and G2/M). These findings were also confirmed by the higher cell density observed in the irradiated group through SEM images. The evidence from this study supports the idea that LLLI increases the proliferation of MC3T3-E1 cells on PLA surfaces, suggesting that it can be potentially applied in bone tissue engineering.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Poliésteres/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Células Cultivadas , Cristalização , Camundongos , Microscopia de Força Atômica , Osteoblastos/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA