Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Food Funct ; 12(23): 11987-12007, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34751296

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by nigrostriatal degeneration and the spreading of aggregated forms of the presynaptic protein α-synuclein (aSyn) throughout the brain. PD patients are currently only treated with symptomatic therapies, and strategies to slow or stop the progressive neurodegeneration underlying the disease's motor and cognitive symptoms are greatly needed. The time between the first neurobiochemical alterations and the initial presentation of symptoms is thought to span several years, and early neuroprotective dietary interventions could delay the disease onset or slow PD progression. In this study, we characterized the neuroprotective effects of isoflavones, a class of dietary polyphenols found in soy products and in the medicinal plant red clover (Trifolium pratense). We found that isoflavone-rich extracts and individual isoflavones rescued the loss of dopaminergic neurons and the shortening of neurites in primary mesencephalic cultures exposed to two PD-related insults, the environmental toxin rotenone and an adenovirus encoding the A53T aSyn mutant. The extracts and individual isoflavones also activated the Nrf2-mediated antioxidant response in astrocytes via a mechanism involving inhibition of the ubiquitin-proteasome system, and they alleviated deficits in mitochondrial respiration. Furthermore, an isoflavone-enriched soy extract reduced motor dysfunction exhibited by rats lesioned with the PD-related neurotoxin 6-OHDA. These findings suggest that plant-derived isoflavones could serve as dietary supplements to delay PD onset in at-risk individuals and mitigate neurodegeneration in the brains of patients.


Assuntos
Glycine max/química , Isoflavonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Trifolium/química , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Modelos Biológicos , Compostos Fitoquímicos/farmacologia , Ratos , Ratos Sprague-Dawley
2.
J Ethnopharmacol ; 206: 408-425, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28214539

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta and the presence in surviving neurons of Lewy body inclusions enriched with aggregated forms of the presynaptic protein α-synuclein (aSyn). Although current therapies provide temporary symptomatic relief, they do not slow the underlying neurodegeneration in the midbrain. In this study, we analyzed contemporary herbal medicinal practices used by members of the Lumbee tribe to treat PD-related symptoms, in an effort to identify safe and effective herbal medicines to treat PD. AIM OF THE STUDY: The aims of this study were to (i) document medicinal plants used by Lumbee Indians to treat PD and PD-related symptoms, and (ii) characterize a subset of plant candidates in terms of their ability to alleviate neurotoxicity elicited by PD-related insults and their potential mechanisms of neuroprotection. MATERIALS AND METHODS: Interviews of Lumbee healers and local people were carried out in Pembroke, North Carolina, and in surrounding towns. Plant samples were collected and prepared as water extracts for subsequent analysis. Extracts were characterized in terms of their ability to induce activation of the nuclear factor E2-related factor 2 (Nrf2) antioxidant response in cortical astrocytes. An extract prepared from Sambucus caerulea flowers (elderflower extract) was further examined for the ability to induce Nrf2-mediated transcription in induced pluripotent stem cell (iPSC)-derived astrocytes and primary midbrain cultures, to ameliorate mitochondrial dysfunction, and to alleviate rotenone- or aSyn-mediated neurotoxicity. RESULTS: The ethnopharmacological interviews resulted in the documentation of 32 medicinal plants used to treat PD-related symptoms and 40 plants used to treat other disorders. A polyphenol-rich extract prepared from elderflower activated the Nrf2-mediated antioxidant response in cortical astrocytes, iPSC-derived astrocytes, and primary midbrain cultures, apparently via the inhibition of Nrf2 degradation mediated by the ubiquitin proteasome system. Furthermore, the elderflower extract rescued mitochondrial functional deficits in a neuronal cell line and alleviated neurotoxicity elicited by rotenone and aSyn in primary midbrain cultures. CONCLUSIONS: These results highlight potential therapeutic benefits of botanical extracts used in traditional Lumbee medicine, and they provide insight into mechanisms by which an elderflower extract could suppress neurotoxicity elicited by environmental and genetic PD-related insults.


Assuntos
Medicina Tradicional , Doença de Parkinson/tratamento farmacológico , Plantas Medicinais/química , Humanos , Indígenas Norte-Americanos , Doença de Parkinson/fisiopatologia
3.
J Ethnopharmacol ; 206: 393-407, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28088492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. AIM OF THE STUDY: The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. MATERIALS AND METHODS: Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. RESULTS: The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death. CONCLUSIONS: Our findings highlight the potential clinical utility of plants used for medicinal purposes over generations by the Pikuni-Blackfeet people, and they shed light on mechanisms by which the plant extracts could slow neurodegeneration in PD.


Assuntos
Medicina Tradicional , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Plantas Medicinais/química , Animais , Antineoplásicos/uso terapêutico , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indígenas Norte-Americanos , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Toxicol Sci ; 140(1): 179-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24718704

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4'-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4'-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Imidazóis/toxicidade , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ligação Competitiva , Mirtilos Azuis (Planta)/química , Sobrevivência Celular/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Imidazóis/metabolismo , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Cultura Primária de Células , Ratos Sprague-Dawley
5.
Brain Res ; 1555: 60-77, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24502982

RESUMO

Neuropathological evidence indicates that dopaminergic cell death in Parkinson׳s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function.


Assuntos
Antocianinas/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Proantocianidinas/uso terapêutico , Rotenona/toxicidade , Animais , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Extratos Vegetais/uso terapêutico , Tirosina 3-Mono-Oxigenase/metabolismo
6.
J Ethnopharmacol ; 153(1): 178-89, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24556225

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nepal is a hotspot for cultural and biological diversities. The tremendous diversity of ecosystems and climates and the blend of medicinal practices inherited from Ayurvedic and Traditional Tibetan Medicine are well suited to a study aimed at discovering information about medicinal plants to treat Parkinson's disease (PD). In addition, this study across Nepal's altitudinal range is relevant to understanding how cultural and ecological environments influence local traditional medicines. The aim of the study is to document the uses of medicinal plants in three different eco-geographical areas of Nepal (Chitwan-Panchase-Mustang) to treat symptoms related to PD. A second goal is to analyze the impact of culture and environment on the evolution of traditional medicine. MATERIALS AND METHODS: The study was conducted in five communities located in three different eco-geographical environments and at altitudes ranging from 300m to 3700m. We interviewed a total of 56 participants (local people, folk, Ayurvedic and Amchi healers) across the three research areas. We conducted open-ended interviews to document the uses of medicinal plants to treat PD-related symptoms. Information provided by the interviewees suggested that the medicinal plants are also used to treat symptoms related to other disorders. We determined the informant consensus factor as well as the importance of specific plant species to (i) identify plants that are the best candidates to be analyzed experimentally for their potential to treat PD and (ii) perform a cross-cultural comparison of the three areas of study. RESULTS: This study reports the local uses of 35 different plant species along the Chitwan-Panchase-Mustang altitudinal range. We identify a total of eight plant species that were used in all three research areas, and more specifically one species used to treat PD-like symptoms. We identify a potential dual protective activity of medicinal plants used to treat PD-related symptoms as recent literature suggests that these plants also have anti-cancer properties. In addition, we document that the presence of Ayurvedic healers could influence local practices and that local practices could influence local Ayurvedic practices. CONCLUSIONS: This study documents the uses of medicinal plants to treat symptoms related to PD and other disorders across the Chitwan-Panchase-Mustang altitudinal range. PD is a neurodegenerative disease affecting a growing number of people worldwide. No cures are available to slow the death of the neurons, and there is a critical need to work towards innovative therapeutic strategies. We identify medicinal plants based on traditional practices to help develop a cure for PD. The three areas of study were chosen for their ecological and cultural diversities, and two of these are included in conservation programs (Panchase Protected Forest and Annapurna Conservation Area). The documentation of community-natural resource relationships is another step in the preservation of traditional practices and local biodiversity and a reflection of communities' rights in the design of conservation programs.


Assuntos
Altitude , Doença de Parkinson/tratamento farmacológico , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Conservação dos Recursos Naturais/métodos , Comparação Transcultural , Etnofarmacologia , Humanos , Ayurveda , Medicina Tradicional/métodos , Nepal , Fitoterapia/métodos
7.
Science ; 342(6161): 979-83, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24158909

RESUMO

α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum-to-Golgi vesicle trafficking.


Assuntos
Benzimidazóis/farmacologia , Citoproteção , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/metabolismo , Animais , Benzimidazóis/química , Caenorhabditis elegans , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Ubiquitina-Proteína Ligases Nedd4 , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Dis Model Mech ; 3(3-4): 194-208, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20038714

RESUMO

alpha-Synuclein (alpha-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because alpha-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson's disease (PD). We previously created a yeast model of alpha-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to alpha-syn expression. We also uncovered a core group of proteins with diverse activities related to alpha-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of alpha-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress alpha-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of alpha-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced alpha-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of alpha-syn foci, re-established ER-to-Golgi trafficking and ameliorated alpha-syn-mediated damage to mitochondria. They also corrected the toxicity of alpha-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of alpha-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.


Assuntos
Antiparkinsonianos/uso terapêutico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Animais , Antiparkinsonianos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Perfilação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transporte Proteico/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA