Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3324, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369695

RESUMO

There has been little analysis of neurochemical correlates of compulsive behaviour to illuminate its underlying neural mechanisms. We use 7-Tesla proton magnetic resonance spectroscopy (1H-MRS) to assess the balance of excitatory and inhibitory neurotransmission by measuring glutamate and GABA levels in anterior cingulate cortex (ACC) and supplementary motor area (SMA) of healthy volunteers and participants with Obsessive-Compulsive Disorder (OCD). Within the SMA, trait and clinical measures of compulsive behaviour are related to glutamate levels, whereas a behavioural index of habitual control correlates with the glutamate:GABA ratio. Participants with OCD also show the latter relationship in the ACC while exhibiting elevated glutamate and lower GABA levels in that region. This study highlights SMA mechanisms of habitual control relevant to compulsive behaviour, common to the healthy sub-clinical and OCD populations. The results also demonstrate additional involvement of anterior cingulate in the balance between goal-directed and habitual responding in OCD.


Assuntos
Ácido Glutâmico , Transtorno Obsessivo-Compulsivo , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Comportamento Compulsivo , Ácido gama-Aminobutírico , Imageamento por Ressonância Magnética
2.
NMR Biomed ; 36(1): e4813, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995750

RESUMO

A three-dimensional (3D), density-weighted, concentric rings trajectory (CRT) magnetic resonance spectroscopic imaging (MRSI) sequence is implemented for cardiac phosphorus (31 P)-MRS at 7 T. The point-by-point k-space sampling of traditional phase-encoded chemical shift imaging (CSI) sequences severely restricts the minimum scan time at higher spatial resolutions. Our proposed CRT sequence implements a stack of concentric rings, with a variable number of rings and planes spaced to optimise the density of k-space weighting. This creates flexibility in acquisition time, allowing acquisitions substantially faster than traditional phase-encoded CSI sequences, while retaining high signal-to-noise ratio (SNR). We first characterise the SNR and point-spread function of the CRT sequence in phantoms. We then evaluate it at five different acquisition times and spatial resolutions in the hearts of five healthy participants at 7 T. These different sequence durations are compared with existing published 3D acquisition-weighted CSI sequences with matched acquisition times and spatial resolutions. To minimise the effect of noise on the short acquisitions, low-rank denoising of the spatiotemporal data was also performed after acquisition. The proposed sequence measures 3D localised phosphocreatine to adenosine triphosphate (PCr/ATP) ratios of the human myocardium in 2.5 min, 2.6 times faster than the minimum scan time for acquisition-weighted phase-encoded CSI. Alternatively, in the same scan time, a 1.7-times smaller nominal voxel volume can be achieved. Low-rank denoising reduced the variance of measured PCr/ATP ratios by 11% across all protocols. The faster acquisitions permitted by 7-T CRT 31 P-MRSI could make cardiac stress protocols or creatine kinase rate measurements (which involve repeated scans) more tolerable for patients without sacrificing spatial resolution.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Espectroscopia de Ressonância Magnética
3.
PLoS One ; 17(6): e0269957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709167

RESUMO

Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously demonstrated decreased energy reserves in the form of phosphocreatine to adenosine-tri-phosphate ratio (PCr/ATP) in the hearts of patients with type 2 diabetes (T2DM). Recent 31P-MRS techniques using 7T systems, e.g. long mixing time stimulated echo acquisition mode (STEAM), allow deeper insight into cardiac metabolism through assessment of inorganic phosphate (Pi) content and myocardial pH, which play pivotal roles in energy production in the heart. Therefore, we aimed to further explore the cardiac metabolic phenotype in T2DM using STEAM at 7T. Seventeen patients with T2DM and twenty-three healthy controls were recruited and their cardiac PCr/ATP, Pi/PCr and pH were assessed at 7T. Diastolic function of all patients with T2DM was assessed using echocardiography to investigate the relationship between diastolic dysfunction and cardiac metabolism. Mirroring the decreased PCr/ATP (1.70±0.31 vs. 2.07±0.39; p<0.01), the cardiac Pi/PCr was increased (0.13±0.07 vs. 0.10±0.03; p = 0.02) in T2DM patients in comparison to healthy controls. Myocardial pH was not significantly different between the groups (7.14±0.12 vs. 7.10±0.12; p = 0.31). There was a negative correlation between PCr/ATP and diastolic function (R2 = 0.33; p = 0.02) in T2DM. No correlation was observed between diastolic function and Pi/PCr and (R2 = 0.16; p = 0.21). In addition, we did not observe any correlation between cardiac PCr/ATP and Pi/PCr (p = 0.19). Using STEAM 31P-MRS at 7T we have for the first time explored Pi/PCr in the diabetic human heart and found it increased when compared to healthy controls. The lack of correlation between measured PCr/ATP and Pi/PCr suggests that independent mechanisms might contribute to these perturbations.


Assuntos
Diabetes Mellitus Tipo 2 , Fósforo , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/metabolismo , Fosfocreatina/metabolismo , Fósforo/metabolismo
4.
NMR Biomed ; 32(6): e4095, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924566

RESUMO

PURPOSE: We test the reproducibility of human cardiac phosphorus MRS (31 P-MRS) at ultra-high field strength (7 T) for the first time. The primary motivation of this work was to assess the reproducibility of a 'rapid' 6½ min 31 P three-dimensional chemical shift imaging (3D-CSI) sequence, which if sufficiently reproducible would allow the study of stress-response processes. We compare this with an established 28 min protocol, designed to record high-quality spectra in a clinically feasible scan time. Finally, we use this opportunity to compare the effect of per-subject B0 shimming on data quality and reproducibility in the 6½ min protocol. METHODS: 10 healthy subjects were scanned on two occasions: one to test the 28 min 3D-CSI protocol, and one to test the 6½ min protocol. Spectra were fitted using the OXSA MATLAB toolbox. The phosphocreatine to adenosine triphosphate concentration ratio (PCr/ATP) from each scan was analysed for intra- and intersubject variability. The impact of different strategies for voxel selection was assessed. RESULTS: There were no significant differences between repeated measurements in the same subject. For the 28 min protocol, PCr/ATP in the midseptal voxel across all scans was 1.91 ± 0.36 (mean ± intersubject SD). For the 6½ min protocol, PCr/ATP in the midseptal voxel was 1.76 ± 0.40. The coefficients of reproducibility (CRs) were 0.49 (28 min) and 0.67 (6½ min). Per-subject B0 shimming improved the fitted PCr/ATP precision (for 6½ min scans), but had negligible effect on the CR (0.67 versus 0.66). CONCLUSIONS: Both 7 T protocols show improved reproducibility compared with a previous 3 T study by Tyler et al. Our results will enable informed power calculations and protocol selection for future clinical research studies.


Assuntos
Espectroscopia de Ressonância Magnética , Miocárdio/metabolismo , Fósforo/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Feminino , Humanos , Masculino , Fosfocreatina/metabolismo , Reprodutibilidade dos Testes , Tamanho da Amostra , Fatores de Tempo
5.
Bioelectromagnetics ; 39(5): 361-374, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29709075

RESUMO

Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col-0, near-null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time-course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1 - and F2 -NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361-374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Campos Magnéticos , Arabidopsis/anatomia & histologia , Análise por Conglomerados , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
6.
Magn Reson Med ; 78(6): 2095-2105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28244131

RESUMO

PURPOSE: Phosphorus (31 P) metabolites are emerging liver disease biomarkers. Of particular interest are phosphomonoester and phosphodiester (PDE) "peaks" that comprise multiple overlapping resonances in 31 P spectra. This study investigates the effect of improved spectral resolution at 7 Tesla (T) on quantifying hepatic metabolites in cirrhosis. METHODS: Five volunteers were scanned to determine metabolite T1 s. Ten volunteers and 11 patients with liver cirrhosis were scanned at 7T. Liver spectra were acquired in 28 min using a 16-channel 31 P array and 3D chemical shift imaging. Concentrations were calculated using γ-adenosine-triphosphate (γ-ATP) = 2.65 mmol/L wet tissue. RESULTS: T1 means ± standard deviations: phosphatidylcholine 1.05 ± 0.28 s, nicotinamide-adenine-dinucleotide (NAD+ ) 2.0 ± 1.0 s, uridine-diphosphoglucose (UDPG) 3.3 ± 1.4 s. Concentrations in healthy volunteers: α-ATP 2.74 ± 0.11 mmol/L wet tissue, inorganic phosphate 2.23 ± 0.20 mmol/L wet tissue, glycerophosphocholine 2.34 ± 0.46 mmol/L wet tissue, glycerophosphoethanolamine 1.50 ± 0.28 mmol/L wet tissue, phosphocholine 1.06 ± 0.16 mmol/L wet tissue, phosphoethanolamine 0.77 ± 0.14 mmol/L wet tissue, NAD+ 2.37 ± 0.14 mmol/L wet tissue, UDPG 2.00 ± 0.22 mmol/L wet tissue, phosphatidylcholine 1.38 ±â€Š0.31 mmol/L wet tissue. Inorganic phosphate and phosphatidylcholine concentrations were significantly lower in patients; glycerophosphoethanolamine concentrations were significantly higher (P < 0.05). CONCLUSION: We report human in vivo hepatic T1 s for phosphatidylcholine, NAD+ , and UDPG for the first time at 7T. Our protocol allows high signal-to-noise, repeatable measurement of metabolite concentrations in human liver. The splitting of PDE into its constituent peaks at 7T may allow more insight into changes in metabolism. Magn Reson Med 78:2095-2105, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Hepatopatias/diagnóstico por imagem , Fígado/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Fósforo/química , Adulto , Ésteres/química , Feminino , Voluntários Saudáveis , Humanos , Cirrose Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Fosfatidilcolinas/química , Controle de Qualidade , Reprodutibilidade dos Testes , Uridina Difosfato Glucose/química , Adulto Jovem
7.
Radiology ; 281(2): 409-417, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27326664

RESUMO

Purpose To test whether the increased signal-to-noise ratio of phosphorus 31 (31P) magnetic resonance (MR) spectroscopy at 7 T improves precision in cardiac metabolite quantification in patients with dilated cardiomyopathy (DCM) compared with that at 3 T. Materials and Methods Ethical approval was obtained, and participants provided written informe consent. In a prospective study, 31P MR spectroscopy was performed at 3 T and 7 T in 25 patients with DCM. Ten healthy matched control subjects underwent 31P MR spectroscopy at 7 T. Paired Student t tests were performed to compare results between the 3-T and 7-T studies. Results The phosphocreatine (PCr) signal-to-noise ratio increased 2.5 times at 7 T compared with that at 3 T. The PCr to adenosine triphosphate (ATP) concentration ratio (PCr/ATP) was similar at both field strengths (mean ± standard deviation, 1.48 ± 0.44 at 3 T vs 1.54 ± 0.39 at 7 T, P = .49), as expected. The Cramér-Rao lower bounds in PCr concentration (a measure of uncertainty in the measured ratio) were 45% lower at 7 T than at 3 T, reflecting the higher quality of 7-T 31P spectra. Patients with dilated cardioyopathy had a significantly lower PCr/ATP than did healthy control subjects at 7 T (1.54 ± 0.39 vs 1.95 ± 0.25, P = .005), which is consistent with previous findings. Conclusion 7-T cardiac 31P MR spectroscopy is feasible in patients with DCM and gives higher signal-to-noise ratios and more precise quantification of the PCr/ATP than that at 3 T. PCr/ATP was significantly lower in patients with DCM than in control subjects at 7 T, which is consistent with previous findings at lower field strengths.


Assuntos
Cardiomiopatia Dilatada/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfocreatina/metabolismo , Fósforo , Estudos Prospectivos , Razão Sinal-Ruído
8.
NMR Biomed ; 28(11): 1570-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492089

RESUMO

The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3) voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min).


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Lobo Occipital/metabolismo , Compostos de Fósforo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/instrumentação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Magnetismo/instrumentação , Masculino , Imagem Molecular/instrumentação , Lobo Occipital/anatomia & histologia , Fósforo/farmacocinética , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA