Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Pharmacol Ther ; 112(3): 605-614, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35355249

RESUMO

PF-06835919 is a first-in-class ketohexokinase inhibitor (KHKi), recently under development for the treatment of metabolic and fatty liver diseases, which inhibited organic anion transporting polypeptide (OATP)1B1 in vitro and presented drug-drug interaction (DDI) risk. This study aims to investigate the dose-dependent effect of KHKi on OATP1B in vivo activity. We performed an open-label study comparing pharmacokinetics of atorvastatin (OATP1B probe) dosed alone (20 mg single dose) and coadministered with two dose strengths of KHKi (50 and 280 mg once daily) in 12 healthy participants. Additionally, changes in exposure of coproporphyrin-I (CP-I), an endogenous biomarker for OATP1B, were assessed in the atorvastatin study (1.12-fold and 1.49-fold increase in area under the plasma concentration-time profile (AUC) with once-daily 50 and 280 mg, respectively), and a separate single oral dose study of KHKi alone (100-600 mg, n = 6 healthy participants; up to a 1.80-fold increase in AUC). Geometric mean ratios (90% confidence interval) of atorvastatin AUC following 50 and 280 mg KHKi were 1.14 (1.00-1.30) and 1.54 (1.37-1.74), respectively. Physiologically-based pharmacokinetic modeling of CP-I plasma exposure following a single dose of KHKi predicted in vivo OATP1B inhibition from about 13% to 70% over the 100 to 600 mg dose range, while using the in vitro inhibition potency (1.9 µM). Model-based analysis correctly predicted "no-effect" (AUC ratio < 1.25) at the low dose range and "weak" effect (AUC ratio < 2) on atorvastatin pharmacokinetics at the high dose range of KHKi. This study exemplified the utility of biomarker-informed model-based approach in discerning even small effects on OATP1B activity in vivo, and to project DDI risk at the clinically relevant doses.


Assuntos
Frutoquinases , Atorvastatina , Biomarcadores , Interações Medicamentosas , Frutoquinases/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Medição de Risco
2.
J Pharmacol Exp Ther ; 372(3): 308-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879375

RESUMO

Within the drug pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME) research community, investigators regularly generate in vitro data sets using appropriately vendor-sourced and processed human tissue. Such data enable drug screening, the generation of kinetic parameters, extrapolation of in vitro to in vivo, as well as the modeling and simulation of drug PK. Although there are large numbers of manuscripts describing studies with deceased organ donor tissue, relatively few investigators have published studies utilizing living donor tissue biopsy samples. After a review of the available literature, it was possible to find publications describing the use of tissue biopsy samples to determine enzyme inhibition ex vivo, the study of genotype-phenotype associations, the evaluation of tissue expression profiling following an inducer, and assessment of correlations between tissue expression profiles and in vivo-derived trait measures (e.g., biomarker plasma levels and probe drug PK). Some reports described multiple single-tissue biopsies, whereas others described single multiple-organ biopsies. It is concluded that biopsy-derived data can support modeling exercises (as input data and when validating models) and enable the assessment of organ-specific changes in enzyme and transporter profiles resulting from drug interactions, disease (e.g., metabolic disease, fibrosis, inflammation, cancer, infection), age, pregnancy, organ impairment, and genotype. With the emergence of multiorgan axes (e.g., microbiome-gut-liver-kidney) and interest in remote sensing (interorgan communication), it is envisioned that there will be increased demand for single- and multiorgan tissue biopsy data to support hypothesis testing and PK-ADME model building. SIGNIFICANCE STATEMENT: Based on a review of the literature, it is apparent that profiling of human tissue biopsy samples is useful in support of pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME)-related studies. With conventional tissue biopsy as precedent, it is envisioned that researchers will turn to less invasive "liquid biopsy" methods in support of ADME-related studies (e.g., profiling of plasma-derived tissue-specific nanovesicles). Generation of such multiorgan liquid biopsy data in larger numbers of subjects and at multiple study time points will provide a rich data set for modeling purposes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fígado/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Biópsia , Humanos , Taxa de Depuração Metabólica , Preparações Farmacêuticas/sangue , Farmacocinética , Distribuição Tecidual
3.
J Appl Toxicol ; 38(10): 1323-1335, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29785833

RESUMO

Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.


Assuntos
Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/urina , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Especificidade da Espécie , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Macaca mulatta , Mesocricetus , Camundongos Endogâmicos C57BL , Pan troglodytes , Coelhos , Ratos Sprague-Dawley , Suínos
4.
J Biomol Screen ; 18(9): 1072-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24062352

RESUMO

Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.


Assuntos
Descoberta de Drogas , Drogas em Investigação/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Corantes Fluorescentes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/química , Relação Estrutura-Atividade
5.
Pharm Res ; 25(4): 713-26, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17899327

RESUMO

PURPOSE: Preclinical and clinical data for 35 proprietary Bristol-Myers Squibb discovery compounds (years 1997 to 2005) were collected and analyzed. In each case, exposure and efficacy in human subjects were projected at the time of nomination (for development) prior to first-in-human dosing. MATERIALS AND METHODS: Projections of area under the plasma concentration-time curve (AUC) in humans involved the use of one or more methods: (1) allometric scaling of animal pharmacokinetic data; (2) clearance projection employing in vitro data (liver microsomes and hepatocytes); (3) chimpanzee as an animal model; (4) the species-invariant time method; and (5) the Css-mean residence time or "Css-MRT" method. Whenever possible, prior clinical experience with lead compounds enabled the selection of the most appropriate method(s). Multiple approaches were also available at the time of the human efficacious dose projections: (1) efficacious exposure from animal efficacy models; (2) in vitro potency; and (3) prior experience with clinical leads. RESULTS: Over the 8 year period described, AUC in humans was projected within 2-fold (20 out of 35 compounds; 57%), greater than 2-fold to 4-fold (11 out of 35 compounds; 32%), and greater than 4-fold (4 out of 35 compounds; 11%) of the observed value. At the time of writing, clinical efficacy data were available for 10 compounds only. In this instance, the efficacious doses were also projected within 2-fold (7 out of 10 compounds; 70%), greater than 2-fold to 4-fold (2 out of 10 compounds; 20%), and greater than 4-fold (1 out of 10 compounds; 10%) of the actual clinical dose. CONCLUSION: Overall, it was possible to project human exposure and efficacious dose within 4-fold of observed clinical values for about 90% of the compounds.


Assuntos
Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Farmacocinética , Animais , Área Sob a Curva , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Pan troglodytes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA