RESUMO
Topical anesthetics are widely applied in order to relieve the discomfort and anxiety caused by needle insertion and other painful superficial interventions at the oral cavity. So far, there are no commercially available effective topical anesthetic formulations for that purpose, and the most of developments are related to hydrophilic and low mucoadhesive forms. Therefore, we have prepared different hybrid nanofilms composed of biopolymer matrices (chitosan, pectin, and chitosan-pectin) blended with nanostructured lipid carriers (NLC) loading the eutectic mixture of 5% lidocaine-prilocaine (LDC-PLC), in order to fulfill this gap in the market. These dual systems were processed as hybrid nanofilms by the solvent/casting method, and its mucoadhesive, structural and mechanical properties were detailed. The most appropriate hybrid nanofilm combined the advantages of both pectin (PCT) and NLC components. The resultant material presented sustained LDC-PLC release profile for more than 8 h; permeation across porcine buccal mucosa almost twice higher than control and non-cytotoxicity against 3T3 and HACAT cell lines. Then, the in vivo efficacy of PCT/NLC formulation was compared to biopolymer film and commercial drug, exhibiting the longest-lasting anesthetic effect (> 7 h), assessed by tail flick test in mice. These pectin-based hybrid nanofilms open perspectives for clinical trials and applications beyond Dentistry.
Assuntos
Anestesia Local/métodos , Anestésicos Locais/uso terapêutico , Odontologia/métodos , Portadores de Fármacos/uso terapêutico , Nanoestruturas/uso terapêutico , Dor/prevenção & controle , Células 3T3 , Anestésicos Locais/farmacologia , Animais , Biopolímeros/uso terapêutico , Células HaCaT , Humanos , Combinação Lidocaína e Prilocaína/farmacologia , Combinação Lidocaína e Prilocaína/uso terapêutico , Camundongos , Mucosa Bucal/efeitos dos fármacos , SuínosRESUMO
Nanostructured lipid carriers (NLC) belong to youngest lipid-based nanocarrier class and they have gained increasing attention over the last ten years. NLCs are composed of a mixture of solid and liquid lipids, which solubilizes the active pharmaceutical ingredient, stabilized by a surfactant. The miscibility of the lipid excipients and structural changes (polymorphism) play an important role in the stability of the formulation and are not easily predicted in the early pharmaceutical development. Even when the excipients are macroscopically miscible, microscopic heterogeneities can result in phase separation during storage, which is only detected after several months of stability studies. In this sense, this work aimed to evaluate the miscibility and the presence of polymorphism in lipid mixtures containing synthetic (cetyl palmitate, Capryol 90®, Dhaykol 6040 LW®, Precirol ATO5® and myristyl myristate) and natural (beeswax, cocoa and shea butters, copaiba, sweet almond, sesame and coconut oils) excipients using Raman mapping and multivariate curve resolution - alternating least squares (MCR-ALS) method. The results were correlated to the macroscopic stability of the formulations. Chemical maps constructed for each excipient allowed the direct comparison among formulations, using standard deviation of the histograms and the Distributional Homogeneity Index (DHI). Lipid mixtures of cetyl palmitate/Capryol®; cetyl palmitate/Dhaykol®; myristyl myristate/Dhaykol® and myristyl myristate/coconut oil presented a single histogram distribution and were stable. The sample with Precirol®/Capryol® was not stable, although the histogram distribution was narrower than the samples with cetyl palmitate, indicating that miscibility was not the factor responsible for the instability. Structural changes before and after melting were identified for cocoa butter and shea butter, but not in the beeswax. Beeswax + copaiba oil sample was very homogenous, without polymorphism and stable over 6â¯months. Shea butter was also homogeneous and, in spite of the polymorphism, was stable. Formulations with cocoa butter presented a wider histogram distribution and were unstable. This paper showed that, besides the miscibility evaluation, Raman imaging could also identify the polymorphism of the lipids, two major issues in lipid-based formulation development that could help guide the developer understand the stability of the NLC formulations.