Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Harmful Algae ; 130: 102542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061823

RESUMO

Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.


Assuntos
Cianobactérias , Microcistinas , Estados Unidos , Microcistinas/análise , Lagos/microbiologia , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Nitrogênio/análise , Fósforo/análise
2.
PLoS One ; 10(7): e0130931, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133991

RESUMO

Subtropical estuaries worldwide face increased pressure on their ecosystem health and services due to increasing human population growth and associated land use/land cover changes, expansion of ports, and climate change. We investigated freshwater inflows (river discharge) and the physico-chemical characteristics of Galveston Bay (Texas, USA) as mechanisms driving variability in phytoplankton biomass and community composition between February 2008 and December 2009. Results of multivariate analyses (hierarchical cluster analysis, PERMANOVA, Mantel test, and nMDS ordination coupled to environmental vector fitting) revealed that temporal and spatial differences in phytoplankton community structure correlate to differences in hydrographic and water quality parameters. Spatially, phytoplankton biomass and community composition responded to nutrient loading from the San Jacinto River in the northwest region of the bay (consistent with nutrient limitation) while hydraulic displacement (and perhaps other processes) resulted in overall lower biomass in the Trinity River delta (northeast region). The influence of inflows on phytoplankton diminished along a north to south gradient in the bay. Temporally, temperature and variables associated with freshwater inflow (discharge volume, salinity, inorganic nitrogen and phosphorus concentrations) were major influences on phytoplankton dynamics. Dissolved inorganic nitrogen: phosphorus (DIN:DIP) ratios suggest that phytoplankton communities will be predominately nitrogen limited. Diatoms dominated during periods of moderate to high freshwater inflows in winter/spring and were more abundant in the upper bay while cyanobacteria dominated during summer/fall when inflow was low. Given the differential influences of freshwater inflow on the phytoplankton communities of Galveston Bay, alterations upstream (magnitude, timing, frequency) will likely have a profound effect on downstream ecological processes and corresponding ecosystem services.


Assuntos
Cianobactérias/fisiologia , Diatomáceas/fisiologia , Nitrogênio/deficiência , Fitoplâncton/fisiologia , Biomassa , Ecossistema , Estuários , Golfo do México , Humanos , Análise Multivariada , Fósforo/metabolismo , Dinâmica Populacional , Rios , Salinidade , Estações do Ano , Água do Mar , Temperatura , Texas , Clima Tropical
3.
Water Res ; 47(13): 4274-85, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23764578

RESUMO

Prymnesium parvum is a haptophyte alga that forms toxic, fish-killing blooms in a variety of brackish coastal and inland waters. Its abundance and toxicity are suppressed by ammonium additions in laboratory cultures and aquaculture ponds. In a cove of a large reservoir (Lake Granbury, Texas, USA) with recurring, seasonal blooms of P. parvum, ammonium additions were tested in mesocosm enclosures for their ability to suppress blooms and their effects on non-target planktonic organisms. One experiment occurred prior to the peak abundance of a P. parvum bloom in the cove, and one encompassed the peak abundance and decline of the bloom. During 21-day experiments, weekly doses raised ammonium concentrations by either 10 or 40 µM. The added ammonium accumulated in experimental mesocosms, with little uptake by biota or other losses. Effects of ammonium additions generally increased over the course of the experiments. The higher ammonium dose suppressed the abundance and toxicity of P. parvum. The biomass of non-haptophyte algae was stimulated by ammonium additions, while positive, negative and neutral effects on zooplankton taxa were observed. Low ammonium additions insufficient to control P. parvum exacerbated its harmful effects. Our results indicate a potential for mitigating blooms of P. parvum with sufficient additions of ammonium to coves of larger lakes. However, factors excluded from mesocosms, such as dilution of ammonium by water exchange and sediment ammonium uptake, could reduce the effectiveness of such additions, and they would entail a risk of eutrophication from the added nitrogen.


Assuntos
Compostos de Amônio/farmacologia , Clima Desértico , Eutrofização/efeitos dos fármacos , Haptófitas/efeitos dos fármacos , Lagos , Clima Tropical , Compostos de Amônio/análise , Análise de Variância , Animais , Biomassa , Daphnia/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Nitratos/análise , Nitritos/análise , Nitrogênio/análise , Fósforo/análise , Texas , Testes de Toxicidade Aguda
4.
Water Res ; 41(12): 2503-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17467032

RESUMO

Prymnesium parvum is a harmful alga whose blooms can cause fish kills in brackish waters. Two potential suppressants of this alga were tested, ammonium and barley straw extract (BSE), at temperatures of 10, 20 and 30 degrees C. Laboratory batch cultures were grown for 3 weeks at each temperature, with weekly doses of ammonium or BSE at either low or high levels, or a no-dose control treatment. The growth rate of P. parvum during exponential phase was highest at 20 degrees C and lowest at 10 degrees C, and was stimulated by the highest ammonium dose. Only cultures grown at 20 degrees C were toxic to fish. The highest ammonium dose abolished such toxicity and reduced the endpoint population density of P. parvum. BSE did not reduce the exponential growth rate, endpoint density, or toxicity to fish of P. parvum. The results support the use of ammonium additions, but not BSE, to suppress harmful blooms of P. parvum in those circumstances where the possible disadvantages can be managed.


Assuntos
Cyprinidae , Eucariotos/efeitos dos fármacos , Hordeum/química , Toxinas Marinhas/toxicidade , Compostos de Amônio Quaternário/farmacologia , Animais , Clorofila/metabolismo , Clorofila A , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Concentração de Íons de Hidrogênio , Extratos Vegetais/farmacologia , Temperatura , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA