Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238413

RESUMO

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
2.
Nat Genet ; 52(10): 1111-1121, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989321

RESUMO

Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.


Assuntos
Resistência à Doença/genética , Metaboloma/genética , Solanum lycopersicum/genética , Transcriptoma/genética , Alcaloides/genética , Domesticação , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/parasitologia , Fungos/genética , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Redes e Vias Metabólicas/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/microbiologia
3.
Metabolites ; 10(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213984

RESUMO

The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.

4.
Nat Commun ; 10(1): 5169, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727889

RESUMO

The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.


Assuntos
Dioxigenases/metabolismo , Frutas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Solanum/metabolismo , Paladar , Alcaloides/química , Alcaloides/metabolismo , Biocatálise , Genes de Plantas , Hidroxilação , Ácidos Cetoglutáricos/química , Locos de Características Quantitativas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Esteroides/química , Esteroides/metabolismo
5.
Plant Physiol ; 180(1): 87-108, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755473

RESUMO

The pollen wall is a complex, durable structure essential for plant reproduction. A substantial portion of phenylpropanoids (e.g. flavonols) produced by pollen grain tapetal cells are deposited in the pollen wall. Transcriptional regulation of pollen wall formation has been studied extensively, and a specific regulatory mechanism for Arabidopsis (Arabidopsis thaliana) pollen flavonol biosynthesis has been postulated. Here, metabolome and transcriptome analyses of anthers from mutant and overexpression genotypes revealed that Arabidopsis MYB99, a putative ortholog of the petunia (Petunia hybrida) floral scent regulator ODORANT1 (ODO1), controls the exclusive production of tapetum diglycosylated flavonols and hydroxycinnamic acid amides. We discovered that MYB99 acts in a regulatory triad with MYB21 and MYB24, orthologs of emission of benzenoids I and II, which together with ODO1 coregulate petunia scent biosynthesis genes. Furthermore, promoter-activation assays showed that MYB99 directs precursor supply from the Calvin cycle and oxidative pentose-phosphate pathway in primary metabolism to phenylpropanoid biosynthesis by controlling TRANSKETOLASE2 expression. We provide a model depicting the relationship between the Arabidopsis MYB triad and structural genes from primary and phenylpropanoid metabolism and compare this mechanism with petunia scent control. The discovery of orthologous protein triads producing related secondary metabolites suggests that analogous regulatory modules exist in other plants and act to regulate various branches of the intricate phenylpropanoid pathway.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Pólen/ultraestrutura , Fatores de Transcrição/fisiologia , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Cumáricos/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(23): E5419-E5428, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784829

RESUMO

Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3ß-hydroxysteroid dehydrogenase/Δ5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.


Assuntos
Alcaloides/biossíntese , Saponinas/biossíntese , Solanaceae/química , Alcaloides/química , Regulação da Expressão Gênica de Plantas/genética , Glicosídeos/biossíntese , Glicosídeos/química , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxirredutases/metabolismo , Extratos Vegetais/química , Plantas Geneticamente Modificadas/metabolismo , Saponinas/química , Saponinas/metabolismo , Solanaceae/metabolismo , Esteroides/química , Tomatina/análogos & derivados , Tomatina/metabolismo
7.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980117

RESUMO

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Assuntos
Alcaloides/metabolismo , Alternaria/fisiologia , Regulação da Expressão Gênica de Plantas , Metabolômica , Doenças das Plantas/imunologia , Solanum/metabolismo , Alcaloides/química , Vias Biossintéticas , Resistência à Doença , Flavonoides/metabolismo , Glicóis/química , Glicóis/metabolismo , Lignina/metabolismo , Fenótipo , Fitosteróis/química , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saponinas/metabolismo , Metabolismo Secundário , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(34): 9062-9067, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28760998

RESUMO

Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold (Botrytis cinerea), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection.


Assuntos
Antioxidantes/metabolismo , Betalaínas/biossíntese , Produtos Agrícolas/genética , Pigmentação/genética , Vias Biossintéticas/genética , Botrytis/fisiologia , Cor , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Resistência à Doença/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum melongena/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
9.
Nat Commun ; 7: 10654, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876023

RESUMO

Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.


Assuntos
Alcaloides/biossíntese , Colesterol/biossíntese , Regulação da Expressão Gênica de Plantas , Ácido Mevalônico/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Terpenos/metabolismo , Fatores de Transcrição/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Hibridização In Situ , Solanum lycopersicum , Oxirredutases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum
10.
New Phytol ; 210(1): 269-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683006

RESUMO

Betalains are tyrosine-derived red-violet and yellow pigments, found in plants only of the Caryophyllales order. Although much progress has been made in recent years in the understanding of the betalain biosynthetic process, many questions remain open with regards to several of the proposed steps in the pathway. Most conspicuous by its absence is the characterization of the first committed step in the pathway, namely the 3-hydroxylation of tyrosine to form l-3,4-dihydroxyphenylalanine (l-DOPA). We used transcriptome analysis of the betalain-producing plants red beet (Beta vulgaris) and four o'clocks (Mirabilis jalapa) to identify a novel, betalain-related cytochrome P450-type gene, CYP76AD6, and carried out gene silencing and recombinant expression assays in Nicotiana benthamiana and yeast cells to examine its functionality. l-DOPA formation in red beet was found to be redundantly catalyzed by CYP76AD6 together with a known betalain-related enzyme, CYP76AD1, which was previously thought to only catalyze a succeeding step in the pathway. While CYP76AD1 catalyzes both l-DOPA formation and its subsequent conversion to cyclo-DOPA, CYP76AD6 uniquely exhibits only tyrosine hydroxylase activity. The new findings enabled us to metabolically engineer entirely red-pigmented tobacco plants through heterologous expression of three genes taking part in the fully decoded betalain biosynthetic pathway.


Assuntos
Beta vulgaris/genética , Betalaínas/biossíntese , Vias Biossintéticas , Engenharia Genética/métodos , Mirabilis/genética , Betacianinas/biossíntese , Betalaínas/química , Betaxantinas/biossíntese , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Di-Hidroxifenilalanina/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Fenótipo , Filogenia , Pigmentação/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética
11.
New Phytol ; 190(3): 683-96, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21275993

RESUMO

• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, ß-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.


Assuntos
Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metabolômica , Análise por Conglomerados , Espectroscopia de Ressonância Magnética , Metaboloma , Análise de Componente Principal , Estatísticas não Paramétricas , Fatores de Tempo
12.
Phytochem Anal ; 20(5): 353-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19425115

RESUMO

INTRODUCTION: Strawberry (Fragaria x ananassa) is rich in polyphenols, particularly anthocyanins, flavonols, condensed tannins and ellagic tannins. In addition to the fruits, the leaves of strawberry also contain a wide range of phenolic compound classes, but have not been investigated to the same extent as the fruit. OBJECTIVE: To characterise a metabolite group present in the leaves of strawberry, that was not amenable for identification based on earlier information available in the literature. METHODOLOGY: Methanolic extracts of strawberry leaves were analysed by UPLC-qTOF-MS/MS and iterative quantum mechanical NMR spectral analysis. RESULTS: The structures of phenylethanol derivatives of phenylpropanoid glucosides Eutigoside A ( F4) and its two isomeric forms 2-(4-hydroxyphenyl)ethyl-[6-O-(Z)-coumaroyl]-beta-D-glucopyranoside (F6) and 4-(2-hydroxyethyl)phenyl-[6-O-(E)-coumaroyl]-beta-D-glucopyranoside (F1) were resolved by NMR and UPLC-qTOF-MS/MS. In addition, two other derivatives of phenylpropanoid glucosides similar to Eutigoside A but possessing different phenolic acid moieties, namely Grayanoside A ( F5) and 2-(4-hydroxyphenyl)ethyl-[6-O-(E)-caffeoyl]-beta-D-glucopyranoside (F14), were similarly identified. Also, accurate characteristic coupling constants for the subunits are reported and their usefulness in structural analysis is highlighted. CONCLUSION: Chemical analysis of the leaves of strawberry (Fragaria x ananassa cv. Jonsok) resulted in the identification of a compound class, phenylethanol derivatives of phenylpropanoid glycosides, not previously found in strawberry.


Assuntos
Ácidos Cafeicos/química , Cumarínicos/análise , Cumarínicos/química , Fragaria/química , Glucosídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Álcool Feniletílico/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glucosídeos/química , Metanol/química , Fenóis/química , Álcool Feniletílico/química , Extratos Vegetais/análise , Extratos Vegetais/química , Propanóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA