RESUMO
BACKGROUND: The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. RESULTS: A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. CONCLUSION: Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry.
Assuntos
Alginatos/química , Gases/metabolismo , Ocimum sanctum/metabolismo , Oryza/química , Extratos Vegetais/química , Óleo de Brassica napus/química , Rúmen/metabolismo , Ração Animal/análise , Animais , Géis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ocimum sanctum/química , Ceras/químicaRESUMO
The human vagina is colonized by a variety of indigenous microflora; in healthy individuals the predominant bacterial genus is Lactobacillus while those with bacterial vaginosis (BV) carry a variety of anaerobic representatives of the phylum Actinobacteria. In this study, we evaluated the antimicrobial activity of benzoyl peroxide (BPO) encapsulated in a hydrogel against Gardnerella vaginalis, one of the causative agents of BV, as well as indicating its safety for healthy human lactobacilli. Herein, it is shown that in well diffusion assays G. vaginalis is inhibited at 0.01% hydrogel-encapsulated BPO and that the tested Lactobacillus spp. can tolerate concentrations of BPO up to 2.5%. In direct contact assays (cells grown in a liquid culture containing hydrogel with 1% BPO or BPO particles), we demonstrated that hydrogels loaded with 1% BPO caused 6-log reduction of G. vaginalis. Conversely, three of the tested Lactobacillus spp. were not inhibited while L. acidophilus growth was slightly delayed. The rheological properties of the hydrogel formulation were probed using oscillation frequency sweep, oscillation shear stress sweep, and shear rate sweep. This shows the gel to be suitable for vaginal application and that the encapsulation of BPO did not alter rheological properties.
Assuntos
Resinas Acrílicas , Antibacterianos/farmacologia , Peróxido de Benzoíla/farmacologia , Gardnerella vaginalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/prevenção & controle , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Vaginose Bacteriana/prevenção & controle , Resinas Acrílicas/farmacologia , Portadores de Fármacos , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lactobacillus/efeitos dos fármacos , Testes de Sensibilidade MicrobianaRESUMO
In a search for genes overexpressed in human sexual hairs, several partial complementary DNA (cDNA) sequences were isolated. Screening of a human scalp cDNA library with one fragment led to the isolation of a full-length cDNA clone, which showed identity to another known sequence, termed KAP24-1 (AB09693). Bioinformatic analysis revealed that the gene for this cDNA consisted of one exon and was located ca. 86 kb away from the chromosome 21q22.1 keratin-associated protein (KAP) gene domain. RT-PCR analysis of a variety of organs showed that KAP24.1 was only present in human scalp. The KAP24.1 protein consisted of 254 amino acids, exhibited a high content of serine, proline, and tyrosine, but low cysteine content and possessed several carboxyterminal tyrosine-containing tandem decameric repeat structures. Evolutionary tree analysis showed no association to other KAP family members. In situ hybridization and indirect immunofluorescence microscopy studies using an antibody derived from KAP24.1 demonstrated specific expression in the middle/upper hair cuticle. The structure of the KRTAP24, its proximity to the chromosome 21q22.1 KAP gene domain, the presence of repeat motifs in the protein and its localization in the hair cuticle points to KAP24.1 being a novel human KAP family member.