Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34323919

RESUMO

Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.


Assuntos
Membrana Celular/metabolismo , Lipídeos/química , Fosfolipases A/metabolismo , Pólen/metabolismo , Zea mays/enzimologia , Eletricidade Estática
3.
EMBO J ; 36(6): 707-717, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228439

RESUMO

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.


Assuntos
Óvulo Vegetal/crescimento & desenvolvimento , Fosfolipases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Reprodução , Zea mays/fisiologia , Regulação da Expressão Gênica de Plantas , Fosfolipases/deficiência , Zea mays/enzimologia
4.
Plant Sci ; 185-186: 33-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325864

RESUMO

Plant oils have so far been mostly directed toward food and feed production. Nowadays however, these oils are more and more used as competitive alternatives to mineral hydrocarbon-based products. This increasing demand for vegetable oils has led to a renewed interest in elucidating the metabolism of storage lipids and its regulation in various plant systems. Cereal grains store carbon in the form of starch in a large endosperm and as oil in an embryo of limited size. Complementary studies on kernel development and metabolism have paved the way for breeding or engineering new varieties with higher grain oil content. This could be achieved either by increasing the relative proportion of the oil-rich embryo within the grain, or by enhancing oil synthesis and accumulation in embryonic structures. For instance, diacylglycerol acyltransferase (DGAT) that catalyses the ultimate reaction in the biosynthesis of triacylglycerol appears to be a promising target for increasing oil content in maize embryos. Similarly, over-expression of the maize transcriptional regulators ZmLEAFY COTYLEDON1 and ZmWRINKLED1 efficiently stimulates oil accumulation in the kernels of transgenic lines. Redirecting carbon from starch to oil in the endosperm, though not yet realized, is discussed.


Assuntos
Grão Comestível/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Cruzamento , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Grão Comestível/genética , Expressão Gênica , Engenharia Genética , Modelos Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Zea mays/genética
5.
Plant Physiol ; 156(2): 674-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474435

RESUMO

WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle. Transcriptomic experiments identified 18 putative target genes of this transcription factor, 12 of which contain in their upstream regions an AW box, the cis-element bound by AtWRI1. In addition to functions related to late glycolysis and fatty acid biosynthesis in plastids, the target genes also have functions related to coenzyme A biosynthesis in mitochondria and the production of glycerol backbones for triacylglycerol biosynthesis in the cytoplasm. Interestingly, the higher seed oil content in ZmWri1a overexpression lines is not accompanied by a reduction in starch, thus opening possibilities for the use of the transgenic maize lines in breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes Duplicados/genética , Genes de Plantas/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Zea mays/genética , Arabidopsis/genética , Sequência de Bases , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Teste de Complementação Genética , Glicólise/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA