Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Neurosci ; 21(1): 12, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216748

RESUMO

BACKGROUND: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS: A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION: Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.


Assuntos
Corpo Estriado/metabolismo , AMP Cíclico/genética , Dopamina/genética , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Neurônios/metabolismo , Animais , AMP Cíclico/metabolismo , Dopamina/metabolismo , Redes Reguladoras de Genes , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleos da Rafe/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Área Tegmentar Ventral/metabolismo
2.
Virus Res ; 128(1-2): 153-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17521763

RESUMO

In the positive-sense RNA genome of Beet yellows Closterovirus (BYV), the 3'-terminal open reading frames (ORFs) 2-8 are expressed as a nested set of subgenomic (sg) RNAs. ORFs 2-6, coding for the structural and movement proteins, form a 'five-gene block' conserved in closteroviruses. We mapped the 5'-end of the ORF 4 sgRNA, which encodes the p64 protein, at adenosine-11169 in the BYV genome. This completes the mapping of the transcription start sites for the five-gene block sgRNAs of BYV. Computer-assisted analysis of the sequences upstream of BYV ORFs 2, 3, 4, 5, and 6 revealed two conserved motifs, which might constitute the subgenomic promoter elements. These motifs are conserved in the equivalent positions upstream of three orthologous genes of Citrus tristeza Closterovirus and two orthologous genes of Beet yellow stunt Closterovirus.


Assuntos
Beta vulgaris/virologia , Closterovirus/metabolismo , Genoma Viral , Regiões Promotoras Genéticas/genética , RNA Viral/genética , Sítio de Iniciação de Transcrição , Proteínas Virais/genética , Sequência de Bases , Closterovirus/genética , Regulação Viral da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA