Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 202(3): 1264-1278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37434037

RESUMO

Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Zinco/farmacologia , Antioxidantes , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Carpa Dourada , Nanopartículas Metálicas/química , Extratos Vegetais/química , Nanopartículas/química , Muco , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química
2.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136186

RESUMO

Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.

3.
Saudi J Biol Sci ; 30(2): 103558, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36712183

RESUMO

Vitamin E (VE), an important lipid-soluble antioxidant, has great influence on growth and maintenance in animal. The effects of VE supplemented diet on growth and feed usage in Nile tilapia (Oreochromis niloticus) was investigated in this study. Three formulated diets containing VE (0, 50 and 100 mg/kg) were fed to Nile tilapia (3.56 ± 0.16 g) in glass aquaria maintaining three replicate groups for 56 days (8 weeks). Survival, growth performance including weight gain, percent weight gain, and specific growth rate (WG, % WG, and SGR), and feed utilization comprising protein efficiency ratio and feed conversion ratio (PER and FCR) were calculated. Hemato-biochemical indices including hemoglobin level (Hb), white blood cell (WBC), red blood cell (RBC) and glucose level were analyzed. In addition, muscle morphology was examined after completion of the experiment. At the end of the trial, WG, %WG, SGR, FCR and PER increased significantly which had dietary VE supplimentation. However, no distinct changes were observed in Hb level, RBC count, WBC count and glucose level among these different dietary groups. Dietary VE treatments significantly upgraded the muscle fiber diameter and lowered the intra-muscle gap. Moreover, quantity of hyperplastic muscle fiber as well as nucleus also significantly enhanced by VE. Morphological structure of muscle characterized by a huge proportion of hyperplastic muscle that may be supposed to contribute the enhanced growth of Nile tilapia receiving VE supplemented diet. Therefore these results suggested that VE incorporation into the feed can be effective to improve the feed efficiency and maximize the growth of O. niloticus.

4.
Biol Trace Elem Res ; 200(9): 4150-4159, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34739679

RESUMO

Zinc (Zn) and vitamin E (VE) are essential micro-nutrients that contribute a pivotal role in the physiology and nutrition of fish. An experiment was designed to know the effects of Zn and VE addition in the diet on growth and feed utilization in Nile tilapia (Oreochromis niloticus). Four diets containing Zn (80 mg/kg), VE (50 mg/kg), Zn (80 mg/kg) + VE (50 mg/kg), and without Zn and VE (control) were fed to Nile tilapia in aquaria with triplicate groups for 6 weeks. Survival, growth parameters (weight gain, WG; %WG; specific growth rate, SGR), and feed utilization (protein efficiency ratio, PER; feed conversion ratio, FCR) were calculated at the end of the feeding trial. Several hemato-biochemical parameters (hemoglobin, Hb; red blood cell, RBC; white blood cell, WBC, and glucose) and morphology of muscle were analyzed. The growth parameters (WG, %WG, and SGR) and feed utilization (FCR and PER) improved significantly in the fish fed with Zn, VE, and Zn + VE supplemented diets. There was no significant change in the values of Hb, RBC, WBC, and glucose level among different groups. Significantly improved diameter of muscle fiber, reduced distance between muscle fiber, and increased number of the nucleus and hyperplastic muscle fiber were observed in the fish fed with Zn, VE, and Zn + VE supplemented diets. These results suggested that Zn and VE can be effectively incorporated into the diets of Nile tilapia for better growth with maximum feed utilization.


Assuntos
Ciclídeos , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Glucose , Vitamina E/farmacologia , Zinco/farmacologia
5.
Fish Shellfish Immunol ; 120: 569-589, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34963656

RESUMO

Aquaculture plays an increasingly significant role in improving the sustainability of global fish production. This sector has been intensified with the advent of new husbandry practices and the development of new technology. However, the increasing intensification and indiscriminate commercialized farming has enhanced the vulnerability of cultivated aquatic species to damage from pathogens. In efforts to confront these various diseases, frequent use of drugs, antibiotics, chemotherapeutics, and agents for sterilization have unintentionally added to the risk of transmission of pathogens and harmful chemical compounds to consumers. Some natural dietary supplements are believed to have the potential to offset this setback in aquaculture. Application of bio-friendly feed additives such as probiotics, prebiotics and synbiotics are becoming popular dietary supplements with the potential to not only improve growth performance, but in some cases can also enhance immune competence and the overall well-being of fish and crustaceans. The present review discusses and summarizes the effects of probiotics, prebiotics and synbiotics application on growth, stress mitigation, microbial composition of intestine, immune system and health condition of aquatic animals in association with existing constraints and future perspectives in aquaculture.


Assuntos
Ração Animal/análise , Resistência à Doença , Peixes , Prebióticos , Probióticos , Simbióticos , Animais , Aquicultura , Peixes/imunologia , Peixes/fisiologia , Reprodução
6.
Biol Trace Elem Res ; 199(12): 4811-4819, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33534071

RESUMO

Chromium (Cr) is a trace element and plays a significant role in fish nutrition and physiology. An experiment was designed to know the effects of Cr addition in the diets to growth and feed utilization in striped catfish (Pangasianodon hypophthalmus). Four diets with Cr (0, 2, 4, and 8 mg kg-1) were fed to striped catfish in aquaria with triplicate groups for 60 days. Survival, growth parameters (weight gain, WG; %WG; specific growth rate, SGR), and feed utilization (feed intake, FI; feed efficiency, FE; protein efficiency ratio, PER; feed conversion ratio, FCR) were calculated at the end of the feeding trial. Several hemato-biochemical parameters, such as hemoglobin (Hb), red blood cell (RBC), white blood cell (WBC) and glucose level, and frequency of micronucleus (MN) formation in erythrocytes, were analyzed. The growth parameters (WG, %WG, and SGR) and feed utilization (FE and PER) increased significantly in the fish fed with 2 and 4 mg kg-1 Cr supplemented diets. On the other hand, the growth parameters suppressed in the fish fed with 8 mg kg-1 Cr-based diet. The polynomial regression analysis based on WG showed that 2.82 mg kg-1 Cr supplementation in the diet is optimum for the tested fish species. The values of Hb (g/dL), RBC (×106/mm3) and blood glucose (mg/dL) significantly decreased in the fish fed with the highest (8 mg kg-1) Cr-based feed. Conversely, MN frequency was significantly increased in the fish fed with 8 mg kg-1 Cr-based diet. Overall, 2.82 mg Cr kg-1 can be added to the diets of striped catfish for its better growth with maximum utilization of feed.


Assuntos
Peixes-Gato , Ração Animal/análise , Animais , Cromo , Dieta/veterinária , Suplementos Nutricionais , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA