Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498393

RESUMO

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Assuntos
Araquidonato 15-Lipoxigenase , Colite , Humanos , Camundongos , Feminino , Animais , Camundongos Transgênicos , Adjuvante de Freund , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/uso terapêutico , Dextranos/efeitos adversos , Dextranos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos Knockout , Edema/induzido quimicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças
2.
Redox Biol ; 64: 102803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392516

RESUMO

Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.


Assuntos
Colite , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Camundongos , Animais , Camundongos Transgênicos , Ácidos Graxos Ômega-3/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Inflamação/genética , Fígado , Estresse Oxidativo
3.
Front Pharmacol ; 14: 1124214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937889

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer death, and medical treatment options are limited. The multikinase inhibitor sorafenib was the first approved drug widely used for systemic therapy in advanced HCC. Sorafenib might affect polyunsaturated fatty acids (PUFA)-derived epoxygenated metabolite levels, as it is also a potent inhibitor of the soluble epoxide hydrolase (sEH), which catalyzes the conversion of cytochrome-P450 (CYP)-derived epoxide metabolites derived from PUFA, such as omega-6 arachidonic acid (AA) and omega-3 docosahexaenoic acid (DHA), into their corresponding dihydroxy metabolites. Experimental studies with AA-derived epoxyeicosatrienoic acids (EETs) have shown that they can promote tumor growth and metastasis, while DHA-derived 19,20-epoxydocosapentaenoic acid (19,20-EDP) was shown to have anti-tumor activity in mice. In this study, we found a significant increase in EET levels in 43 HCC patients treated with sorafenib and a trend towards increased levels of DHA-derived 19,20-EDP. We demonstrate that the effect of sorafenib on CYP- metabolites led to an increase of 19,20-EDP and its dihydroxy metabolite, whereas DHA plasma levels decreased under sorafenib treatment. These data indicate that specific supplementation with DHA could be used to increase levels of the epoxy compound 19,20-EDP with potential anti-tumor activity in HCC patients receiving sorafenib therapy.

4.
Front Pharmacol ; 13: 838782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308198

RESUMO

Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.

5.
FASEB J ; 35(4): e21491, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710695

RESUMO

An increased omega-3 polyunsaturated fatty acid (n-3 PUFA) tissue status can lead to a significant formation of anti-inflammatory lipid mediators and effective reduction in inflammation and tissue injury in murine colitis. Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory bowel disease as well as in the formation of pro- and anti-inflammatory lipid mediators. To explore the role of Alox15 in the protective response found in fat1 transgenic mice with endogenously increased n-3 PUFA tissue status fat1 transgenic mice were crossed with Alox15-deficient animals and challenged in the dextran sulfate sodium (DSS)- and the 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis model. Transgenic fat1 mice rich in endogenous n-3 PUFAs were protected from colitis. However, additional systemic inactivation of the Alox15 gene counteracted this protective effect. To explore the molecular basis for this effect Alox15 lipid metabolites derived from n-3 PUFA were analyzed in the different mice. Alox15 deficiency suppressed the formation of n-3 PUFA-derived 15-hydroxy eicosapentaenoic acid (15-HEPE). In contrast, treating mice with intraperitoneal injections of 15S-HEPE protected wild-type mice from DSS- and TNBS-induced colitis. These data suggest that the anti-colitis effect of increased n-3 PUFA in the transgenic fat1 mouse model is mediated in part via Alox15-derived 15-HEPE formation.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Eicosanoides/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/tratamento farmacológico , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Ácido Trinitrobenzenossulfônico/farmacologia
6.
PLoS One ; 12(9): e0184470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886129

RESUMO

Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14-30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary.


Assuntos
Dieta , Ácidos Graxos Ômega-3/metabolismo , Oxilipinas/metabolismo , Animais , Peso Corporal , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Stem Cells ; 32(2): 364-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123565

RESUMO

Reprogramming somatic cells to a pluripotent state drastically reconfigures the cellular anabolic requirements, thus potentially inducing cancer-like metabolic transformation. Accordingly, we and others previously showed that somatic mitochondria and bioenergetics are extensively remodeled upon derivation of induced pluripotent stem cells (iPSCs), as the cells transit from oxidative to glycolytic metabolism. In the attempt to identify possible regulatory mechanisms underlying this metabolic restructuring, we investigated the contributing role of hypoxia-inducible factor one alpha (HIF1α), a master regulator of energy metabolism, in the induction and maintenance of pluripotency. We discovered that the ablation of HIF1α function in dermal fibroblasts dramatically hampers reprogramming efficiency, while small molecule-based activation of HIF1α significantly improves cell fate conversion. Transcriptional and bioenergetic analysis during reprogramming initiation indicated that the transduction of the four factors is sufficient to upregulate the HIF1α target pyruvate dehydrogenase kinase (PDK) one and set in motion the glycolytic shift. However, additional HIF1α activation appears critical in the early upregulation of other HIF1α-associated metabolic regulators, including PDK3 and pyruvate kinase (PK) isoform M2 (PKM2), resulting in increased glycolysis and enhanced reprogramming. Accordingly, elevated levels of PDK1, PDK3, and PKM2 and reduced PK activity could be observed in iPSCs and human embryonic stem cells in the undifferentiated state. Overall, the findings suggest that the early induction of HIF1α targets may be instrumental in iPSC derivation via the activation of a glycolytic program. These findings implicate the HIF1α pathway as an enabling regulator of cellular reprogramming.


Assuntos
Proteínas de Transporte/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Hormônios Tireóideos/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA