Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 54(6): 4496-4506, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27356917

RESUMO

Sarcosine is an N-methyl derivative of the amino acid glycine, and its elevation in tissues and physiological fluids of patients with sarcosinemia could reflect a deficient pool size of activated 1-carbon units. Sarcosinemia is a rare inherited metabolic condition associated with mental retardation. In the present study, we investigated the acute effect of sarcosine and/or creatine plus pyruvate on some parameters of oxidative stress and energy metabolism in cerebral cortex homogenates of 21-day-old Wistar rats. Acute administration of sarcosine induced oxidative stress and diminished the activities of adenylate kinase, GAPDH, complex IV, and mitochondrial and cytosolic creatine kinase. On the other hand, succinate dehydrogenase activity was enhanced in cerebral cortex of rats. Moreover, total sulfhydryl content was significantly diminished, while DCFH oxidation, TBARS content, and activities of SOD and GPx were significantly enhanced by acute administration of sarcosine. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by sarcosine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that acute administration of sarcosine may stimulate oxidative stress and alter the energy metabolism in cerebral cortex of rats. In case these effects also occur in humans, they may contribute, along with other mechanisms, to the neurological dysfunction of sarcosinemia, and creatine and pyruvate supplementation could be beneficial to the patients.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Metabolismo Energético , Estresse Oxidativo , Sarcosina/administração & dosagem , Adenilato Quinase/metabolismo , Animais , Creatina Quinase/metabolismo , Fluoresceínas/metabolismo , Glutationa Peroxidase/metabolismo , Modelos Biológicos , Oxirredução , Ratos Wistar , Superóxido Dismutase/metabolismo
2.
Mol Neurobiol ; 51(3): 1184-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24961569

RESUMO

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.


Assuntos
Córtex Cerebral/enzimologia , Creatina/farmacologia , Estresse Oxidativo/fisiologia , Ácido Pirúvico/farmacologia , Transferases/metabolismo , Tirosina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Ratos Wistar , Tirosina/análogos & derivados
3.
Metab Brain Dis ; 27(1): 79-89, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22101931

RESUMO

Phenylketonuria is characterized by a variable degree of mental retardation and other neurological features whose mechanisms are not fully understood. In the present study we investigated the effect of intrahippocampal administration of phenylalanine, isolated or associated with pyruvate or creatine, on rat behavior and on oxidative stress. Sixty-day-old male Wistar rats were randomly divided into 6 groups: saline; phenylalanine; pyruvate; creatine; phenylalanine + pyruvate; phenylalanine + creatine. Phenylalanine was administered bilaterally in the hippocampus one hour before training; pyruvate, at the same doses, was administered in the hippocampus one hour before phenylalanine; creatine was administered intraperitoneally twice a day for 5 days before training; controls received saline solution at same volumes than the other substances. Parameters of exploratory behavior and of emotionality were assessed in both training and test sessions in the open field task. Rats receiving phenylalanine did not habituate to the open field along the sessions, indicating deficit of learning/memory, but parameters of emotionality were normal, not interfering in the habituation process. Pyruvate or creatine administration prevented the lack of habituation caused by phenylalanine. Pyruvate and creatine also prevented alterations provoked by phenylalanine on lipid peroxidation, total content of sulfhydryls, total radical-trapping antioxidant potential and total antioxidant reactivity. The results suggest that the behavioral alterations provoked by intra-hippocampal administration of phenylalanine may be caused, at least in part, by oxidative stress and/or energy deficit. If this also occurs in PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric patients.


Assuntos
Creatina/administração & dosagem , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilalanina/efeitos adversos , Fenilcetonúrias/metabolismo , Ácido Pirúvico/administração & dosagem , Animais , Antioxidantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Habituação Psicofisiológica/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fenilalanina/administração & dosagem , Fenilcetonúrias/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA