Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171331

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Acetaminofen/toxicidade , Carbono , Glutationa/metabolismo , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo
2.
Redox Biol ; 52: 102313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447412

RESUMO

Lower circulating levels of glycine are consistently reported in association with cardiovascular disease (CVD), but the causative role and therapeutic potential of glycine in atherosclerosis, the underlying cause of most CVDs, remain to be established. Here, following the identification of reduced circulating glycine in patients with significant coronary artery disease (sCAD), we investigated a causative role of glycine in atherosclerosis by modulating glycine availability in atheroprone mice. We further evaluated the atheroprotective potential of DT-109, a recently identified glycine-based compound with dual lipid/glucose-lowering properties. Glycine deficiency enhanced, while glycine supplementation attenuated, atherosclerosis development in apolipoprotein E-deficient (Apoe-/-) mice. DT-109 treatment showed the most significant atheroprotective effects and lowered atherosclerosis in the whole aortic tree and aortic sinus concomitant with reduced superoxide. In Apoe-/- mice with established atherosclerosis, DT-109 treatment significantly reduced atherosclerosis and aortic superoxide independent of lipid-lowering effects. Targeted metabolomics and kinetics studies revealed that DT-109 induces glutathione formation in mononuclear cells. In bone marrow-derived macrophages (BMDMs), glycine and DT-109 attenuated superoxide formation induced by glycine deficiency. This was abolished in BMDMs from glutamate-cysteine ligase modifier subunit-deficient (Gclm-/-) mice in which glutathione biosynthesis is impaired. Metabolic flux and carbon tracing experiments revealed that glycine deficiency inhibits glutathione formation in BMDMs while glycine-based treatment induces de novo glutathione biosynthesis. Through a combination of studies in patients with CAD, in vivo studies using atherosclerotic mice and in vitro studies using macrophages, we demonstrated a causative role of glycine in atherosclerosis and identified glycine-based treatment as an approach to mitigate atherosclerosis through antioxidant effects mediated by induction of glutathione biosynthesis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Modelos Animais de Doenças , Glutamato-Cisteína Ligase , Glutationa/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Superóxidos
3.
Circulation ; 142(5): 483-498, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32354235

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Aneurisma da Aorta Abdominal/prevenção & controle , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Modelos Animais de Doenças , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Aminopropionitrilo/toxicidade , Aneurisma Roto/etiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/efeitos dos fármacos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Colesterol/metabolismo , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Mutação com Ganho de Função , Regulação da Expressão Gênica , Vetores Genéticos/toxicidade , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transcriptoma/efeitos dos fármacos
4.
Lipids ; 53(11-12): 1031-1041, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30560569

RESUMO

The polyphenol-rich pomegranate juice (PJ) and the high-density lipoprotein (HDL)-associated paraoxonase1 (PON1) are known as potent atheroprotective antioxidants, but their effects on other tissues related to cardiovascular disease (CVD) remain unknown. The current study aimed to investigate the effects of treating mice with PJ or recombinant PON1 (rePON1) on the oxidation and lipid status of CVD-related tissues: serum, aorta, heart, liver, kidney, visceral, and subcutaneous adipose tissues (VAT and SAT). Both PJ consumption and rePON1 injection decreased the serum levels of thiobarbituric acid-reactive substances (16% and 19%) and triacylglycerols (TAG, 24% and 27%), while only rePON1 increased the levels of thiol groups (35%) and decreased serum cholesterol (15%). Both PJ and rePON1 significantly decreased aortic cholesterol (38% and 32%) and TAG (62% and 58%) contents in association with downregulation of the key TAG biosynthetic enzyme diacylglycerol O-acyltransferase 1 (DGAT1, 71% and 65%), while only PJ decreased aortic lipid peroxides (47%). Substantial TAG-lowering effects of both PJ and rePON1 were observed also in the heart (31% and 42%), liver (34% and 42%), and kidney (42% and 57%). In both VAT and SAT, rePON1 decreased the levels of lipid peroxides (28% and 25%), while PJ decreased the TAG content (22% and 18%). Ex vivo incubation of SAT with serum derived from mice that consumed PJ or injected with rePON1 decreased SAT lipid peroxides (35% or 28%) and TAG mass (12% or 10%). These novel findings highlight potent TAG-lowering properties of exogenous (PJ) and endogenous (PON1) antioxidants in tissues associated with CVD.


Assuntos
Antioxidantes/farmacologia , Arildialquilfosfatase/farmacologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Lythraceae/química , Extratos Vegetais/farmacologia , Triglicerídeos/sangue , Animais , Doenças Cardiovasculares/tratamento farmacológico , Colesterol/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Gordura Subcutânea/efeitos dos fármacos
5.
Biofactors ; 44(3): 245-262, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29399895

RESUMO

Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 44(3):245-262, 2018.


Assuntos
Anticolesterolemiantes/farmacologia , Suplementos Nutricionais , Células Espumosas/efeitos dos fármacos , Cetoácidos/farmacologia , Leucina/farmacologia , Macrófagos/efeitos dos fármacos , Trifosfato de Adenosina/agonistas , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colesterol/biossíntese , VLDL-Colesterol/antagonistas & inibidores , VLDL-Colesterol/biossíntese , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/metabolismo , Relação Dose-Resposta a Droga , Células Espumosas/citologia , Células Espumosas/metabolismo , Voluntários Saudáveis , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Triglicerídeos/antagonistas & inibidores , Triglicerídeos/biossíntese
6.
J Nutr Biochem ; 45: 24-38, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431321

RESUMO

Atherosclerosis-related research has focused mainly on the effects of lipids on macrophage foam cell formation and atherogenesis, whereas the role of amino acids (AAs) was understudied. The current study aimed to identify anti- or pro-atherogenic AA in the macrophage model system and to elucidate the underlying metabolic and molecular mechanisms. J774A.1 cultured macrophages were treated with increasing concentrations of each 1 of the 20 AAs. Macrophage atherogenicity was assessed in terms of cellular toxicity, generation of reactive oxygen species (ROS) and cellular cholesterol or triglyceride content. At nontoxic concentrations (up to 1 mM), modest effects on ROS generation or cholesterol content were noted, but six specific AAs significantly affected macrophage triglyceride content. Glycine, cysteine, alanine and leucine significantly decreased macrophage triglyceride content (by 24%-38%), through attenuated uptake of triglyceride-rich very low-density lipoprotein (VLDL) by macrophages. In contrast, glutamate and glutamine caused a marked triglyceride accumulation in macrophages (by 107% and 129%, respectively), via a diacylglycerol acyltransferase-1 (DGAT1)-dependent increase in triglyceride biosynthesis rate with a concurrent maturation of the sterol regulatory element-binding protein-1 (SREBP1). Supplementation of apolipoprotein E-deficient (apoE-/-) mice with glycine for 40 days significantly decreased the triglyceride levels in serum and in peritoneal macrophages (MPMs) isolated from the mice (by 19%). In contrast, glutamine supplementation significantly increased MPM ROS generation and the accumulation of cholesterol and that of triglycerides (by 48%), via enhanced uptake of LDL and VLDL. Altogether, the present findings reveal some novel roles for specific AA in macrophage atherogenicity, mainly through modulation of cellular triglyceride metabolism.


Assuntos
Aminoácidos/metabolismo , Aterosclerose/metabolismo , Macrófagos/patologia , Triglicerídeos/metabolismo , Aminoácidos/sangue , Aminoácidos/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Antígenos CD36/metabolismo , Colesterol/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Knockout para ApoE , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
7.
Biofactors ; 43(1): 100-116, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27517171

RESUMO

During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Células Espumosas/fisiologia , Ácido Linoleico/farmacologia , Macrófagos Peritoneais/fisiologia , Óleo de Soja/farmacologia , Triglicerídeos/biossíntese , Animais , Linhagem Celular , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Células Espumosas/efeitos dos fármacos , Peroxidação de Lipídeos , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Cardiovasc Pharmacol ; 68(2): 106-14, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27010808

RESUMO

At high concentrations, polyphenols induce cell death, and the polyphenols-rich pomegranate juice (PJ), known for its antioxidative/antiatherogenic properties, can possibly affect cell death, including macrophage death involved in atherogenesis. In the present study, apoptotic/necrotic macrophage death was analyzed in J774A.1 macrophages and in peritoneal macrophages isolated from atherosclerotic apoE-/- mice treated with PJ. The effects of PJ were compared with those of the free radical generator 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Both PJ and AAPH significantly increased J774A.1 macrophage death; however, flow cytometric and microscopic analyses using annexin V/propidium iodide revealed that PJ increased the early apoptosis of the macrophage dose dependently (up to 2.5-fold, P < 0.01), whereas AAPH caused dose-dependent increases in late apoptosis/necrosis (up to 12-fold, P < 0.001). Unlike PJ, AAPH-induced macrophage death was associated with increased intracellular oxidative stress (up to 7-fold, P < 0.001) and with lipid stress demonstrated by triglyceride accumulation (up to 3-fold, P < 0.01) and greater chromatic vesicle response to culture medium (up to 5-fold, P < 0.001). Accordingly, recombinant paraoxonase 1, which hydrolyzes oxidized lipids, attenuated macrophage death induced by AAPH, but not by PJ. Similar apoptotic and oxidative effects were found in macrophages from apoE-/- mice treated with PJ or AAPH. As macrophage apoptotic/necrotic death has considerable impact on atherosclerosis progression, these findings may provide novel mechanisms for the antiatherogenicity of PJ.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Sucos de Frutas e Vegetais , Lythraceae , Macrófagos Peritoneais/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Amidinas/farmacologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Lythraceae/química , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos Knockout , Necrose , Oxidantes/isolamento & purificação , Fitoterapia , Plantas Medicinais , Polifenóis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA