Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123228, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579664

RESUMO

Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.


Assuntos
Carcinoma , Níquel , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Apoptose , Fígado
2.
J Nat Prod ; 74(8): 1757-63, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21800857

RESUMO

Polyacetylenes and other common plant components, such as starch, pectin, cellulose, and lignin, were studied in roots of the wild carrot (Daucus carota) subspecies D. carota subsp. gummifer and D. carota subsp. maximus by Raman spectroscopy. The components were measured in situ, directly in the plant tissue and without any preliminary sample preparation. The analysis was performed on the basis of the intense and characteristic key bands observed in the Raman spectrum. The two main carrot polyacetylenes falcarinol (1) and falcarindiol (2) have similar molecular structures, but their Raman spectra exhibit a small band shift in the symmetric -C≡C-C≡C- mode from 2258 cm⁻¹ to 2252 cm⁻¹. Quantum chemical calculations confirmed that the differences observed between the samples may be due to conformational and environmental changes. The polyacetylenes were also detected by Raman mapping, which visualized the distribution of the compounds across sections of carrot roots. The mapping technique was also applied to assess the distribution of lignin and polysaccharide compounds. The results showed the tissue-specific accumulation of starch and cell wall components such as lignin, pectin, and cellulose.


Assuntos
Daucus carota/química , Di-Inos/isolamento & purificação , Di-Inos/farmacologia , Álcoois Graxos/isolamento & purificação , Álcoois Graxos/farmacologia , Poli-Inos/isolamento & purificação , Poli-Inos/farmacologia , Parede Celular/química , Di-Inos/química , Álcoois Graxos/química , Lignina/análise , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pectinas , Raízes de Plantas/química , Polissacarídeos/análise , Poli-Inos/química , Amido/análise
3.
J Agric Food Chem ; 59(14): 7647-53, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21682272

RESUMO

Food plants from the Apiaceae family have been found to demonstrate health-promoting properties. Polyacetylenes are bioactive compounds that are considered to contribute substantially to the beneficial properties of Apiaceae plants. This study applied a Raman mapping technique in the investigation of polyacetylene spatial distribution in fresh roots of some Apiaceae species. Fresh root sections were measured directly without any preliminary preparation. For three Apiaceae species, that is, parsnip ( Pastinaca sativa L.), celeriac ( Apium graveolens var. rapaceum L.), and parsley ( Petroselinum crispum ), the presence of polyacetylenes was confirmed due to the detection of strong and well-separated Raman signals of symmetric -C ≡ C-C ≡ C- stretching vibration in the range of 2200-2300 cm(-1). The spectra were used for generation of two-dimensional maps applying the integration and cluster analysis methods. The Raman maps visualized the distribution of total polyacetylenes as well as individual compounds. Heterogeneous and tissue-specific occurrence of polyacetylenes in roots is shown.


Assuntos
Apiaceae/química , Extratos Vegetais/análise , Poli-Inos/análise , Análise Espectral Raman/métodos , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA