Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 98: 107694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35576744

RESUMO

The COVID-19 has a worldwide spread, which has prompted concerted efforts to find successful drug treatments. Drug design focused on finding antiviral therapeutic agents from plant-derived compounds which may disrupt the attachment of SARS-CoV-2 to host cells is with a pivotal need and role in the last year. Herein, we provide an approach based on drug design methods combined with machine learning approaches to classify and discover inhibitors for COVID-19 from natural products. The spike receptor-binding domain (RBD) was docked with database of 125 ligands. The docking protocol based on several steps was performed within Autodock Vina to identify the high-affinity binding mode and to reveal more insights into interaction between the phytochemicals and the RBD domain. A protein-ligand interaction analyzer has been developed. The drug-likeness properties of explored inhibitors are analyzed in the frame of exploratory data analyses. The developed computational protocol yielded a comprehensive pipeline for predicting the inhibitors to prevent the entry RBD region.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Adv Colloid Interface Sci ; 249: 192-212, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28499604

RESUMO

The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Meios de Contraste/administração & dosagem , Compostos Férricos/administração & dosagem , Humanos , Hipertermia Induzida/instrumentação , Nanopartículas de Magnetita/administração & dosagem , Simulação de Dinâmica Molecular , Método de Monte Carlo , Nanomedicina/métodos , Teoria Quântica
3.
J Med Microbiol ; 60(Pt 1): 75-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20829396

RESUMO

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 10(5) c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 10(5) c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 10(5) c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


Assuntos
Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Argônio/farmacologia , Argônio/uso terapêutico , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Animais , Antissepsia/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Modelos Animais , Ratos , Ratos Sprague-Dawley , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
4.
PLoS One ; 4(6): e5984, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19543385

RESUMO

BACKGROUND: We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (DeltaNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a "self-adjuvant effect", in turn increasing vaccine immunogenicity. As a result, DeltaNS1 viruses elicit strong B- and T- cell mediated immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We applied this technology to the development of a pandemic H5N1 vaccine candidate. The vaccine virus was constructed by reverse genetics in Vero cells, as a 5:3 reassortant, encoding four proteins HA, NA, M1, and M2 of the A/Vietnam/1203/04 virus while the remaining genes were derived from IVR-116. The HA cleavage site was modified in a trypsin dependent manner, serving as the second attenuation factor in addition to the deleted NS1 gene. The vaccine candidate was able to grow in the Vero cells that were cultivated in a serum free medium to titers exceeding 8 log(10) TCID(50)/ml. The vaccine virus was replication deficient in interferon competent cells and did not lead to viral shedding in the vaccinated animals. The studies performed in three animal models confirmed the safety and immunogenicity of the vaccine. Intranasal immunization protected ferrets and mice from being infected with influenza H5 viruses of different clades. In a primate model (Macaca mulatta), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains. CONCLUSION/SIGNIFICANCE: Our findings show that intranasal immunization with the replication deficient H5N1 DeltaNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of DeltaNS1 pandemic and seasonal influenza vaccine candidates are currently in progress.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/uso terapêutico , Administração Intranasal , Animais , Brônquios/citologia , Linhagem Celular , Galinhas , Chlorocebus aethiops , Cães , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vacinas contra Influenza/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Células Vero , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA