Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L770-L784, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33624555

RESUMO

Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.


Assuntos
Reprogramação Celular , Hipóxia Fetal/fisiopatologia , Feto/fisiopatologia , Hipóxia/fisiopatologia , Metaboloma , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Artéria Pulmonar/fisiopatologia , Altitude , Animais , Cálcio , Feminino , Idade Gestacional , Gravidez , Ovinos
2.
Vaccine ; 35(28): 3582-3590, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28536029

RESUMO

CIGB-247 is a cancer therapeutic vaccine, based on recombinant modified human vascular endothelial growth factor (VEGF) as antigen, in combination with the adjuvant VSSP, a bacterially-derived adjuvant. The vaccine have demonstrated efficacy in several murine malignancy models. These studies supported the rationale for a phase I clinical trial where safety, tolerance, and immunogenicity of CIGB-247 was studied in patients with advanced solid tumors at three antigen dose level. Surviving individuals of this clinical trial were eligible to receive off-trial voluntary re-immunizations. The present work is focus in the immunological follow up of these patients after approximately three years of immunizations, without additional oncological treatments. Long term vaccination was feasible and safe. Our results indicated that after sustained vaccination most of the patients conserved their seroconversion status. The specific anti-VEGF IgG titer diminished, but in all the cases keeps values up from the pre-vaccination levels. Continued vaccination was also important to produce a gradual shift in the anti-VEGF IgG response from IgG1 to Ig4. Outstanding, our results indicated that long-term off-trial vaccination could be associated with the maintaining of one reserve of antibodies able to interfere with the VEGF/Receptor interaction and the production of IFNγ secretion in CD8+ cells. The results derived from the study of this series of patients suggest that long term therapeutic vaccination is a feasible strategy, and highlight the importance of continuing the clinical development program of this novel cancer therapeutic vaccine candidate. We also highlight the future clinical applications of CIGB-247 in cancer and explain knowledge gaps that future studies may address. Registration number and name of trial registry: RPCEC00000102. Cuban Public Clinical Trial Registry (WHO accepted Primary Registry). Available from: http://registroclinico.sld.cu/.


Assuntos
Vacinas Anticâncer/imunologia , Imunidade Celular , Imunidade Humoral , Imunoterapia Ativa , Neoplasias/terapia , Fator A de Crescimento do Endotélio Vascular/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Terapias Complementares , Feminino , Seguimentos , Humanos , Imunização/métodos , Esquemas de Imunização , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Neoplasias/imunologia , Vacinação , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética
3.
Free Radic Biol Med ; 91: 215-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26686469

RESUMO

S-nitrosothiols (SNOs) such as S-nitroso-L-cysteine (L-cysNO) are endogenous compounds with potent vasodilatory activity. During circulation in the blood, the NO moiety can be exchanged among various thiol-containing compounds by S-transnitrosylation, resulting in SNOs with differing capacities to enter the cell (membrane permeability). To determine whether the vasodilating potency of SNOs is dependent upon membrane permeability, membrane-permeable L-cysNO and impermeable S-nitroso-D-cysteine (D-cysNO) and S-nitroso-glutathione (GSNO) were infused into one femoral artery of anesthetized adult sheep while measuring bilateral femoral and systemic vascular conductances. L-cysNO induced vasodilation in the infused hind limb, whereas D-cysNO and GSNO did not. L-cysNO also increased intracellular NO in isolated arterial smooth muscle cells, whereas GSNO did not. The infused SNOs remained predominantly in a low molecular weight form during first-passage through the hind limb vasculature, but were converted into high molecular weight SNOs upon systemic recirculation. At systemic concentrations of ~0.6 µmol/L, all three SNOs reduced mean arterial blood pressure by ~50%, with pronounced vasodilation in the mesenteric bed. Pharmacokinetics of L-cysNO and GSNO were measured in vitro and in vivo and correlated with their hemodynamic effects, membrane permeability, and S-transnitrosylation. These results suggest local vasodilation by SNOs in the hind limb requires membrane permeation, whereas systemic vasodilation does not. The systemic hemodynamic effects of SNOs occur after equilibration of the NO moiety amongst the plasma thiols via S-transnitrosylation.


Assuntos
Cisteína/análogos & derivados , S-Nitrosotióis/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Células Cultivadas , Cisteína/farmacologia , Cisteína/fisiologia , Avaliação Pré-Clínica de Medicamentos , Peso Molecular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Ovinos
4.
Hum Vaccin Immunother ; 11(8): 2030-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25891359

RESUMO

CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alumínio/administração & dosagem , Vacinas Anticâncer/imunologia , Química Farmacêutica , Fosfatos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Anticorpos Neutralizantes/sangue , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Chlorocebus aethiops , Citotoxicidade Imunológica , Feminino , Esquemas de Imunização , Leucócitos Mononucleares/imunologia , Masculino , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Experimentais/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA