Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0264254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196359

RESUMO

Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.


Assuntos
Catequina/análogos & derivados , Síndrome de Down/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/uso terapêutico , Síndrome de Down/metabolismo , Esquema de Medicação , Feminino , Masculino , Camundongos , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
2.
Sci Rep ; 10(1): 10426, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591597

RESUMO

Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.


Assuntos
Catequina/análogos & derivados , Síndrome de Down/tratamento farmacológico , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Catequina/administração & dosagem , Catequina/uso terapêutico , Modelos Animais de Doenças , Síndrome de Down/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Resultado do Tratamento , Microtomografia por Raio-X
3.
Complement Ther Med ; 45: 234-241, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31331567

RESUMO

OBJECTIVE: Usage of and views concerning alternative therapies in the DS community are not well documented. Some positive effects of green tea extracts (GTE) containing Epigallocathechin-3-gallate (EGCG) have been reported in individuals with DS and DS mouse models, but minimal improvements or detrimental effects of pure EGCG treatment have been reported in DS mouse models. Given the uncertainty about the effectiveness of these supplements, the goal of this study was to determine the relative prevalence of and attitudes about GTE/EGCG treatments among DS caregivers. METHODS: An anonymous survey about attitudes and usage of GTE/EGCG in individuals with DS was completed by caregivers of these individuals. RESULTS: GTE/EGCG treatment was provided by 18% of responding caregivers who were mostly younger, highly educated, and utilized scientific sources and other parents to influence their decision to use GTE/EGCG. Individuals with DS who received GTE/EGCG were characterized as less severely disabled. Most caregivers who did not give GTE/EGCG reported concerns about potential side effects and lack of effectiveness. Few caregivers consulted with medical providers about GTE/EGCG usage. CONCLUSIONS: These results demonstrate a need for communication between caregivers, medical providers, and scientists about potential benefits and risks for adverse effects of GTE, EGCG, and other nutritional supplements in individuals with DS.


Assuntos
Catequina/análogos & derivados , Síndrome de Down/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Chá/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atitude , Cuidadores , Catequina/uso terapêutico , Estudos Transversais , Suplementos Nutricionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Physiol Behav ; 177: 230-241, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28478033

RESUMO

Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.


Assuntos
Catequina/análogos & derivados , Cognição/efeitos dos fármacos , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Fêmur/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Catequina/farmacologia , Cognição/fisiologia , Modelos Animais de Doenças , Síndrome de Down/enzimologia , Síndrome de Down/psicologia , Fêmur/diagnóstico por imagem , Fêmur/enzimologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fenótipo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Distribuição Aleatória , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Falha de Tratamento , Quinases Dyrk
5.
Mol Nutr Food Res ; 60(4): 717-726, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748562

RESUMO

SCOPE: Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is characterized by a spectrum of phenotypes including skeletal abnormalities. The Ts65Dn DS mouse model exhibits similar skeletal phenotypes as humans with DS. DYRK1A, a kinase encoded on Hsa21, has been linked to deficiencies in bone homeostasis in DS mice and individuals with DS. Treatment with Epigallocatechin-3-gallate (EGCG), a known inhibitor of Dyrk1a, improves some skeletal abnormalities associated with DS in mice. EGCG supplements are widely available but the effectiveness of different EGCG-containing supplements has not been well studied. METHODS AND RESULTS: Six commercially available supplements containing EGCG were analyzed, and two of these supplements were compared with pure EGCG for their impact on skeletal deficits in a DS mouse model. The results demonstrate differential effects of commercial supplements on correcting skeletal abnormalities in Ts65Dn mice. Different EGCG-containing supplements display differences in degradation, polyphenol content, and effects on trisomic bone. CONCLUSION: This work suggests that the dose of EGCG and composition of EGCG-containing supplements may be important in correcting skeletal deficits associated with DS. Careful analyses of these parameters may lead to a better understanding of how to improve skeletal and other deficits that impair individuals with DS.


Assuntos
Osso e Ossos/efeitos dos fármacos , Catequina/análogos & derivados , Síndrome de Down/fisiopatologia , Absorciometria de Fóton , Animais , Osso e Ossos/anormalidades , Catequina/química , Catequina/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Síndrome de Down/dietoterapia , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA