Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 259: 112981, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32442591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM: The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS: Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS: Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 µg/mL and 7.8 µg/mL and PhEO IC50s were 0.46 µg/mL and 30.5 µg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 µg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 µg/mL, 37 µg/mL, 46 µg/mL, respectively. Macrophage viability was around 90% even at 200 µg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 µg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 µg/mL in the presence of the compounds. CONCLUSIONS: The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.


Assuntos
Antiprotozoários/farmacologia , Burseraceae , Leishmania mexicana/efeitos dos fármacos , Macrófagos/parasitologia , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Antiprotozoários/isolamento & purificação , Burseraceae/química , Burseraceae/classificação , Células Cultivadas , Relação Dose-Resposta a Droga , Leishmania mexicana/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Monoterpenos/isolamento & purificação , Óleos Voláteis/isolamento & purificação , Carga Parasitária , Testes de Sensibilidade Parasitária , Óleos de Plantas/isolamento & purificação
2.
Wound Repair Regen ; 22(4): 537-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25041622

RESUMO

Supplementation with olive and fish oils reverses the effects of stress on behavioral activities and adrenal activation. However, previous studies have not shown whether supplementation with olive and fish oil could inhibit the effects of stress on cutaneous wound healing. Thus, this study investigated the effects of supplementation with fish or olive oil on cutaneous healing in stressed mice. Mice were subjected to rotational stress and treated with olive or fish oil daily until euthanasia. An excisional lesion was created on each mouse, and 14 days later, the lesions were analyzed. In addition, murine skin fibroblasts were exposed to elevated epinephrine levels plus olive oil, and fibroblast activity was evaluated. In the in vivo studies, administration of olive oil, but not fish oil, inhibited stress-induced reduction in wound contraction, reepithelialization, hydroxyproline levels, and blood vessel density. Stress-induced increases in vascular endothelial growth factor expression and the numbers of macrophages and neutrophils were reversed only by olive oil. Both oils reversed stress-induced increase in catecholamine levels and oxidative damage. In in vitro studies, olive oil treatment reversed the reduction in fibroblast migration and collagen deposition and the increase in lipid peroxidation induced by epinephrine. In conclusion, supplementation with olive oil, but not fish oil, improves cutaneous wound healing in chronically stressed mice.


Assuntos
Catecolaminas/metabolismo , Óleos de Peixe/farmacologia , Óleos de Plantas/farmacologia , Pele/fisiopatologia , Estresse Fisiológico , Cicatrização , Animais , Comportamento Animal , Colágeno/metabolismo , Epinefrina/farmacologia , Tecido de Granulação/patologia , Imuno-Histoquímica , Masculino , Camundongos , Neutrófilos/metabolismo , Azeite de Oliva , Estresse Oxidativo , Pele/lesões , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA