Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958908

RESUMO

Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Resistência à Insulina , Síndrome Metabólica , Humanos , Lactoferrina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Adjuvantes Imunológicos , Metabolismo Energético , Ferro/metabolismo , Hipertensão/tratamento farmacológico
2.
Nutrients ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839380

RESUMO

Osteoporosis is a chronic disease and public health issue in aging populations. Inadequate intake of micronutrients increases the risk of bone loss during an adult's lifespan and therefore of osteoporosis. The aim of the study was to analyze the effects of consumption of biofortified crops with the micronutrient molybdenum (Mo) on bone remodeling and metabolism in a population of adults and seniors. The trial enrolled 42 senior and 42 adult people randomly divided into three groups that consumed lettuce biofortified with molybdenum (Mo-biofortified group) or without biofortification (control group) or molybdenum in a tablet (Mo-tablet group) for 12 days. We chose an experimental period of 12 days because the bone remodeling marker levels are influenced in the short term. Therefore, a period of 12 days allows us to determine if there are changes in the indicators. Blood samples, obtained at time zero and at the end of the study, were compared within the groups adults and seniors for the markers of bone resorption, C-terminal telopeptide (CTX) and bone formation osteocalcin, along with the markers of bone metabolism, parathyroid hormone (PTH), calcitonin, albumin-adjusted calcium, vitamin D, phosphate and potassium. Consumption of a Mo tablet did not affect bone metabolism in the study. Consumption of Mo-biofortified lettuce significantly reduced levels of CTX and PTH and increased vitamin D in adults and seniors while levels of osteocalcin, calcitonin, calcium, potassium and phosphate were not affected. The study opens up new considerations about the role of nutrition and supplementation in the prevention of chronic diseases in middle-aged and older adults. Consumption of Mo-biofortified lettuce positively impacts bone metabolism in middle-aged and older adults through reduced bone resorption and improved bone metabolism while supplementation of Mo tablets did not affect bone remodeling or metabolism. Therefore, Mo-biofortified lettuce may be used as a nutrition intervention to improve bone homeostasis and prevent the occurrence of osteoporosis in the elderly.


Assuntos
Reabsorção Óssea , Envelhecimento Saudável , Osteoporose , Idoso , Pessoa de Meia-Idade , Humanos , Biofortificação , Cálcio , Calcitonina , Molibdênio , Osteocalcina , Hormônio Paratireóideo , Vitamina D , Micronutrientes , Potássio , Doença Crônica , Homeostase
3.
Biometals ; 36(3): 417-436, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35920949

RESUMO

Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Lactoferrina/química , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Ferro/metabolismo
4.
Front Nutr ; 10: 1288064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196756

RESUMO

Introduction: Phenolic compounds in lettuce can increase by the application of positive stress (eustress) such as moderate saline stress. Phenolic compounds possess antioxidant capacity that is a key factor in the detoxification of excess reactive oxygen species. A double-blinded randomized interventional and placebo- controlled study design was carried out to compare the effect of daily dietary eustress lettuce ingestion in hepatic, lipid, bone, glucose, and iron metabolism. Methods: Forty-two healthy volunteers, 19 female and 23 male participants, were divided into two groups. Participants were randomized into a polyphenol-enriched treatment (PET) arm or control arm. Each arm consumed 100 g/day of control or eustress (polyphenols enriched treatment = PET) lettuce for 12 days. Primary study outcomes were serological analysis for assessing hepatic, lipid, bone, iron, and glucose markers at baseline and after 12 days. Secondary outcomes assessed body composition. Results: Salinity stress reduced plant yield but increased caffeic acid (+467%), chlorogenic acid (+320%), quercetin (+538%), and rutin (+1,095%) concentrations. The intake of PET lettuce reduced PTH, low-density lipoprotein (LDL), cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) enzyme levels and increased vitamin D and phosphate levels, while iron and glucose metabolism were unaffected. Discussion: Supplementation with eustress lettuce by increasing polyphenols concentration ameliorates hepatic, lipid, and bone homeostasis. Body composition was not affected. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/NCT06002672, identifier: NCT06002672.

5.
Pharmaceutics ; 14(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36297546

RESUMO

SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1ß and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19.

6.
Nutrients ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405964

RESUMO

Diabetes is expected to increase up to 700 million people worldwide with type 2 diabetes being the most frequent. The use of nutritional interventions is one of the most natural approaches for managing the disease. Minerals are of paramount importance in order to preserve and obtain good health and among them molybdenum is an essential component. There are no studies about the consumption of biofortified food with molybdenum on glucose homeostasis but recent studies in humans suggest that molybdenum could exert hypoglycemic effects. The present study aims to assess if consumption of lettuce biofortified with molybdenum influences glucose homeostasis and whether the effects would be due to changes in gastrointestinal hormone levels and specifically Peptide YY (PYY), Glucagon-Like Peptide 1 (GLP-1), Glucagon-Like Peptide 2 (GLP-2), and Gastric Inhibitory Polypeptide (GIP). A cohort of 24 people was supplemented with biofortified lettuce for 12 days. Blood and urine samples were obtained at baseline (T0) and after 12 days (T2) of supplementation. Blood was analyzed for glucose, insulin, insulin resistance, ß-cell function, and insulin sensitivity, PYY, GLP-1, GLP-2 and GIP. Urine samples were tested for molybdenum concentration. The results showed that consumption of lettuce biofortified with molybdenum for 12 days did not affect beta cell function but significantly reduced fasting glucose, insulin, insulin resistance and increased insulin sensitivity in healthy people. Consumption of biofortified lettuce did not show any modification in urine concentration of molybdenum among the groups. These data suggest that consumption of lettuce biofortified with molybdenum improves glucose homeostasis and PYY and GIP are involved in the action mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Alimentos Fortificados , Resistência à Insulina , Molibdênio , Glicemia , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon , Peptídeo 2 Semelhante ao Glucagon , Glucose , Homeostase , Humanos , Insulina , Lactuca , Molibdênio/administração & dosagem , Peptídeo YY
7.
Front Nutr ; 9: 871638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399653

RESUMO

It is estimated that one-third of the world's population lives in areas where iodine (I) is scarce and its deficiency is responsible for many related disorders, such as goiter, reproductive failure, hearing loss, growth impairment, congenital I deficiency syndrome, and numerous kinds of brain injury. Mineral deficiencies can be overcome via dietary diversification and mineral supplementation. An alternative or even complementary way is represented by the intake of biofortified foods, which can tackle this lack of micronutrients. In this short-term double-arm nutritional intervention study, a cohort of ten people was supplemented with curly endive leaf biofortified with I and ten people with curly endive without biofortification (Intervention Study on Iodine Biofortification Vegetables (Nutri-I-Food - Full-Text View - ClinicalTrials.gov). The effects on whole-body homeostasis and specifically on I, glucose, lipid, and hepatic, iron metabolism was investigated. Blood samples were obtained at baseline and after 12 days of supplementation with curly endive and compared with controls. Hematochemical and urinary parameters were analyzed at baseline and after 12 days. The results showed that short-term I curly endive intervention did not affect the whole body homeostasis in healthy people and revealed an increase in I concentration in urine samples and an increase in vitamin D, calcium, and potassium concentration in blood samples only in the biofortified cohort respect to controls. This study suggests that short-term consumption of I curly endive crops is safe and could positively impact body health.

8.
J Clin Med ; 10(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34575388

RESUMO

SARS-CoV-2, an enveloped, single-stranded RNA virus causing COVID-19, exerts morbidity and mortality especially in elderly, obese individuals and those suffering from chronic conditions. In addition to the availability of vaccines and the limited efficacy of the first dose of vaccine against SARS-CoV-2 variants, there is an urgent requirement for the discovery and development of supplementary antiviral agents. Lactoferrin (Lf), a pleiotropic cationic glycoprotein of innate immunity, has been proposed as a safe treatment combined with other therapies in COVID-19 patients. Here, we present a small retrospective study on asymptomatic, paucisymptomatic, and moderate symptomatic COVID-19 Lf-treated versus Lf-untreated patients. The time required to achieve SARS-CoV-2 RNA negativization in Lf-treated patients (n = 82) was significantly lower (p < 0.001) compared to that observed in Lf-untreated ones (n = 39) (15 versus 24 days). A link among reduction in symptoms, age, and Lf treatment was found. The Lf antiviral activity could be explained through the interaction with SARS-CoV-2 spike, the binding with heparan sulfate proteoglycans of cells, and the anti-inflammatory activity associated with the restoration of iron homeostasis disorders, which favor viral infection/replication. Lf could be an important supplementary treatment in counteracting SARS-CoV-2 infection, as it is also safe and well-tolerated by all treated patients.

9.
Front Pharmacol ; 12: 666600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220505

RESUMO

Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 µg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.

10.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348646

RESUMO

The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.

11.
Biometals ; 33(2-3): 159-168, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32274616

RESUMO

Milk derivative bovine Lactoferrin (bLf), a multifunctional glycoprotein available in large quantities and recognized as safe, possesses high homology and identical functions with human Lactoferrin. There are numerous food supplements containing bLf which, however, can vary in its purity, integrity and, consequently, functionality. Here, we report on a clinical trial where bLf (100 mg two times/day) was orally administered before (Arm A) or during meals (Arm B) to pregnant women with hereditary thrombophilia and suffering from anemia of inflammation. A significant increase of the number of red blood cells (RBCs), hemoglobin (Hb), total serum iron (TSI) and serum ferritin (sFtn) levels, along with a significant decrease of interleukin-6 were detected after 30 days in Arm A, but not in Arm B, thus letting us to hypothesize that bLf inefficacy could be related to its degradation by digestive proteases. To verify this hypothesis, bLf was incubated in gastric juice collected before or after meals. An undigested or a digested profile was observed when bLf was incubated in gastric juice sampled before or after meals, respectively. These results can explain the beneficial effect observed when bLf is administered under fasting conditions, i.e. in the absence of active proteases.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Inflamação/tratamento farmacológico , Ferro/metabolismo , Lactoferrina/administração & dosagem , Lactoferrina/uso terapêutico , Trombofilia/tratamento farmacológico , Administração Oral , Anemia Ferropriva/sangue , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/análise , Bovinos , Feminino , Suco Gástrico/química , Suco Gástrico/metabolismo , Humanos , Inflamação/sangue , Ferro/sangue , Lactoferrina/análise , Gravidez , Trombofilia/sangue
12.
Cell Signal ; 65: 109461, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678680

RESUMO

Glioblastoma, the most lethal form of brain cancer, is characterized by fast growth, migration and invasion of the surrounding parenchyma, with epithelial-to-mesenchymal transition (EMT)-like process being mostly responsible for tumour spreading and dissemination. A number of actors, including cadherins, vimentin, transcriptional factors such as SNAIL, play critical roles in the EMT process. The interleukin (IL)-6/STAT3 axis has been related to enhanced glioblastoma's migration and invasion abilities as well. Here, we present data on the differential effects of native and iron-saturated bovine lactoferrin (bLf), an iron-chelating glycoprotein of the innate immune response, in inhibiting migration in a human glioblastoma cell line. Through a wound healing assay, we found that bLf was able to partially or completely hinder cell migration, depending on its iron saturation rate. At a molecular level, bLf down-regulated both SNAIL and vimentin expression, while inducing a notable increase in cadherins' levels and inhibiting IL-6/STAT3 axis. Again, these effects positively correlated to bLf iron-saturation state, with the Holo-form resulting more efficient than the native one. Overall, our data suggest that bLf could represent a novel and efficient adjuvant treatment for glioblastoma's standard therapeutic approaches.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Lactoferrina/farmacologia , Fator de Transcrição STAT3/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Vimentina/metabolismo
13.
Int J Mol Sci ; 18(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914813

RESUMO

Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 µg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.


Assuntos
Glicoproteínas/metabolismo , Homeostase , Lactoferrina/metabolismo , Anemia/etiologia , Anemia/metabolismo , Anemia Ferropriva/etiologia , Anemia Ferropriva/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Feminino , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/farmacologia , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Ferro/química , Ferro/metabolismo , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/farmacologia , Saúde Bucal , Gravidez , Nascimento Prematuro/metabolismo , Nascimento Prematuro/prevenção & controle , Ligação Proteica , Relação Estrutura-Atividade
14.
Front Immunol ; 8: 705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28663751

RESUMO

Human lactoferrin (hLf), an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf), which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in "pure" M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml), the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn), membrane-bound ceruloplasmin (Cp), cytosolic ferritin (Ftn), transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1ß cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1ß production and efficiently prevented the changes of Fpn, membrane-bound Cp, cytosolic Ftn, and transferrin receptor 1 in "pure" M1 macrophages, as well as in the more heterogeneous macrophage population. In addition, the decrease of IL-10 induced by the LPS/IFN-γ mix was counteracted by bovine lactoferrin. Several drugs capable of modulating macrophagic phenotypes are emerging as attractive molecules for treating inflammation, and in this sense, bovine lactoferrin is no exception.

15.
Biochem Cell Biol ; 95(1): 34-40, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28094551

RESUMO

Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/isolamento & purificação , Inflamação/tratamento farmacológico , Lactoferrina/farmacologia , Animais , Bovinos , Infecções por Chlamydia/microbiologia , Ensaios Clínicos como Assunto , Feminino , Células HeLa , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA