Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(8)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893466

RESUMO

Objective. In mammography, breast compression forms an essential part of the examination and is achieved by lowering a compression paddle on the breast. Compression force is mainly used as parameter to estimate the degree of compression. As the force does not consider variations of breast size or tissue composition, over- and undercompression are a frequent result. This causes a highly varying perception of discomfort or even pain in the case of overcompression during the procedure. To develop a holistic, patient specific workflow, as a first step, breast compression needs to be thoroughly understood. The aim is to develop a biomechanical finite element breast model that accurately replicates breast compression in mammography and tomosynthesis and allows in-depth investigation. The current work focuses thereby, as a first step, to replicate especially the correct breast thickness under compression.Approach. A dedicated method for acquiring ground truth data of uncompressed and compressed breasts within magnetic resonance (MR) imaging is introduced and transferred to the compression within x-ray mammography. Additionally, we created a simulation framework where individual breast models were generated based on MR images.Main results. By fitting the finite element model to the results of the ground truth images, a universal set of material parameters for fat and fibroglandular tissue could be determined. Overall, the breast models showed high agreement in compression thickness with a deviation of less than ten percent from the ground truth.Significance. The introduced breast models show a huge potential for a better understanding of the breast compression process.


Assuntos
Neoplasias da Mama , Compressão de Dados , Humanos , Feminino , Mama/diagnóstico por imagem , Mama/patologia , Mamografia/métodos , Pressão , Simulação por Computador , Neoplasias da Mama/patologia
2.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200011

RESUMO

The microwave ablation technique to destroy cancer tissues in liver is practiced clinically and is the subject of ongoing research, e.g., ablation monitoring. For studies, liver tissue from cattle or pigs is often used as a substitute material. In this work, sweet potato is presented as an alternative material for microwave ablation experiments in liver due to similar material properties. Sweet potatoes as a substitute for liver have the advantages of better handling, easy procurement and stable material properties over time for microwave ablation experiments. The dielectric constant and electrical conductivity of sweet potato are characterized for temperature variation with the help of high-temperature dielectric probe. Furthermore, a test setup is presented for microwave ablation experiments in which a bowtie slot antenna matched to sweet potato is placed on its surface to directly receive the microwave power from a self-developed microwave applicator inserted into a sweet potato 4 cm below the surface antenna. A high-power source was used to excite the microwave powers up to 80 W and a spectrum analyzer was used to measure the signal received by the surface antenna. The experiments were performed in an anechoic chamber for safety reasons. Power at 50 W and 80 W was stimulated for a maximum of 600 s at the 2.45 GHz ISM band in different sweet potato experiments. A correlation is found between the power received by the surface antenna and rise of temperature inside sweet potato; relative received power drops from 1 at 76 ∘C to 0.6 at 88 ∘C (max. temperature) represents a 40% relative change in a 50 W microwave ablation experiment. The received power envelope at the surface antenna is between 10 mW and 32 mW during 50 W microwave ablation. Other important results for 10 min, 80 W microwave ablation include: a maximum ablation zone short axis diameter of 4.5 cm and a maximum ablation temperature reached at 99 ∘C, 3 mm away from the applicator's slot. The results are compared with the state of the art in microwave ablation in animal liver. The dielectric constant and electrical conductivity evolution of sweet potato with rising temperature is comparable to animal liver in 50-60 ∘C range. The reflection loss of self-developed applicator in sweet potato is below 15 dB which is equal to reflection loss in liver experiments for 600 s. The temperature rise for the first 90 s in sweet potato is 76 ∘C as compared to 73 ∘C in liver with 50 W microwave ablation. Similarly, with 80-75 W microwave ablation, for the first 60 s, the temperature is 98 ∘C in sweet potato as compared to 100 ∘C in liver. The ablation zone short-axis diameter after 600 s is 3.3 cm for 50 W microwave ablation in sweet potato as compared to 3.5 cm for 30 W microwave ablation in liver. The reasons for difference in microwave ablation results in sweet potato and animal liver are discussed. This is the first study to directly receive a signal from microwave applicator during a microwave ablation process with the help of a surface antenna. The work can be extended to multiple array antennas for microwave ablation monitoring.


Assuntos
Técnicas de Ablação , Ipomoea batatas , Solanum tuberosum , Animais , Bovinos , Fígado/cirurgia , Micro-Ondas , Suínos
3.
IEEE Trans Med Imaging ; 37(10): 2266-2277, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29993714

RESUMO

The polychromatic X-ray spectrum and the energy-dependent attenuation coefficient of materials cause beam hardening artifacts in CT reconstructed volumes. These artifacts appear as cupping and streak artifacts depending on the material composition and the geometry of the imaged object. CT scanners employ projection linearization to transform polychromatic attenuation to monochromatic attenuation using a polynomial model. Polynomial coefficients are computed during calibration or using prior information such as X-ray spectrum and attenuation properties of the materials. In this paper, we are presenting a novel method to correct beam hardening artifacts by enforcing cone beam consistency conditions on the projection data. We used consistency conditions derived from Grangeat's fundamental relation between cone beam projection data and 3-D Radon transform. The optimal polynomial coefficients for artifact reduction are iteratively estimated by minimizing the inconsistency of a set of projection pairs. The results from simulated and real datasets show the visible reduction of artifacts. Our studies also demonstrate the robustness of the algorithm when the projections are perturbed with other physical measurement and geometrical errors. The proposed method requires neither calibration nor prior information like X-ray spectrum, attenuation properties of the materials and detector response. The algorithm can be used for beam hardening correction in clinical, pre-clinical, and industrial CT systems.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Interpretação de Imagem Assistida por Computador/métodos , Artefatos , Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/instrumentação , Humanos , Arcada Osseodentária/diagnóstico por imagem , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA