Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 46(1): 93-115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36454513

RESUMO

BACKGROUND: The main mechanism underlying cancer dissemination is the epithelial to mesenchymal transition (EMT). This process is orchestrated by cytokines like TGFß, involving "non-canonical" AKT- or STAT3-driven pathways. Recently, the alteration of copper homeostasis seems involved in the onset and progression of cancer. METHODS: We expose different breast cancer cell lines, including two triple negative (TNBC) ones, an HER2 enriched and one cell line representative of the Luminal A molecular subtype, to short- or long-term copper-chelation by triethylenetetramine (TRIEN). We analyse changes in the expression of EMT markers (E-cadherin, fibronectin, vimentin and αSMA), in the levels and activity of extracellular matrix components (LOXL2, fibronectin and MMP2/9) and of copper homeostasis markers by Western blot analyses, immunofluorescence, enzyme activity assays and RT-qPCR. Boyden Chamber and wound healing assays revealed the impact of copper chelation on cell migration. Additionally, we explored whether perturbation of copper homeostasis affects EMT prompted by TGFß. Metabolomic and lipidomic analyses were applied to search the effects of copper chelation on the metabolism of breast cancer cells. Finally, bioinformatics analysis of data on breast cancer patients obtained from different databases was employed to correlate changes in kinases and copper markers with patients' survival. RESULTS: Remarkably, only HER2 negative breast cancer cells differently responded to short- or long-term exposure to TRIEN, initially becoming more aggressive but, upon prolonged exposure, retrieving epithelial features, reducing their invasiveness. This phenomenon may be related to the different impact of the short and prolonged activation of the AKT kinase and to the repression of STAT3 signalling. Bioinformatics analyses confirmed the positive correlation of breast cancer patients' survival with AKT activation and up-regulation of CCS. Eventually, metabolomics studies demonstrate a prevalence of glycolysis over mitochondrial energetic metabolism and of lipidome changes in TNBC cells upon TRIEN treatment. CONCLUSIONS: We provide evidence of a pivotal role of copper in AKT-driven EMT activation, acting independently of HER2 in TNBC cells and via a profound change in their metabolism. Our results support the use of copper-chelators as an adjuvant therapeutic strategy for TNBC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fibronectinas/uso terapêutico , Cobre/farmacologia , Cobre/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Disponibilidade Biológica , Trientina/farmacologia , Trientina/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Fator de Crescimento Transformador beta/metabolismo , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/farmacologia , Aminoácido Oxirredutases/uso terapêutico
2.
Dermatol Online J ; 29(5)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478649

RESUMO

Phytophotodermatitis is a condition caused by contamination of the skin with phototoxic plant substances, followed by exposure to ultraviolet rays. Ficus carica L 1753, belonging to the Moraceae family, can be responsible for acute photodermatitis. We present five cases of photodermatitis caused by contact with Ficus carica L and subsequent exposure to sunlight. A histopathologic study and review of the literature are included.


Assuntos
Dermatite Fototóxica , Ficus , Humanos , Dermatite Fototóxica/diagnóstico , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/patologia , Extratos Vegetais
3.
J Neurochem ; 112(1): 183-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19845829

RESUMO

The copper-enzyme cytochrome c oxidase (Cytox) has been indicated as a primary molecular target of mutant copper, zinc superoxide dismutase (SOD1) in familial amyotrophic lateral sclerosis (fALS); however, the mechanism underlying its inactivation is still unclear. As the toxicity of mutant SOD1s could arise from their selective recruitment to mitochondria, it is conceivable that they might compete with Cytox for the mitochondrial copper pool causing Cytox inactivation. To investigate this issue, we used mouse motoneuronal neuroblastoma x spinal cord cell line-34, stably transfected for the inducible expression of low amounts of wild-type or mutant (G93A, H46R, and H80R) human SOD1s and compared the effects observed on Cytox with those obtained by copper depletion. We demonstrated that all mutants analyzed induced cell death and decreased the Cytox activity, but not the protein content of the Cytox subunit II, at difference with copper depletion that also affected subunit II protein. Copper supplementation did not counteract mutant hSOD1s toxicity. Otherwise, the treatment of neuroblastoma x spinal cord cell line-34 expressing G93A, H46R, or H80R hSOD1 mutants, and showing constitutive expression of iNOS and nNOS, with either a NO scavenger, or NOS inhibitors prevented the inhibition of Cytox activity and rescued cell viability. These results support the involvement of NO in mutant SOD1s-induced Cytox damage, and mitochondrial toxicity.


Assuntos
Cobre/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neurônios Motores/enzimologia , Mutação , Óxido Nítrico/fisiologia , Superóxido Dismutase/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cobre/deficiência , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA