Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 72(3): 941-958, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33165620

RESUMO

Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.


Assuntos
Frutas/fisiologia , Óxido Nítrico/fisiologia , Solanum lycopersicum/fisiologia , Etilenos , Regulação da Expressão Gênica de Plantas , Fenótipo
2.
Molecules ; 24(4)2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30781526

RESUMO

Tibouchina pulchra (Cham.) Cogn. is a plant native to Brazil whose genus and family (Melastomataceae) are poorly studied with regards to its metabolite profile. Phenolic pigments of pink flowers were studied by ultra-performance liquid chromatography with a photodiode array detector and electrospray ionization quadrupole time-of-flight mass spectrometry. Therein, twenty-three flavonoids were identified with eight flavonols isolated by preparative high-performance liquid chromatography and analysed by one- and two-dimensional nuclear magnetic resonance. Kaempferol derivatives were the main flavonols, encompassing almost half of the detected compounds with different substitution patterns, such as glucoside, pentosides, galloyl-glucoside, p-coumaroyl-glucoside, and glucuronide. Concerning the anthocyanins, petunidin p-coumaroyl-hexoside acetylpentoside and malvidin p-coumaroyl-hexoside acetylpentoside were identified and agreed with previous reports on acylated anthocyanins from Melastomataceae. A new kaempferol glucoside was identified as kaempferol-(2''-O-methyl)-4'-O-α-d-glucopyranoside. Moreover, twelve compounds were described for the first time in the genus with five being new to the family, contributing to the chemical characterisation of these taxa.


Assuntos
Flavonoides/química , Flores/química , Glicosídeos/química , Melastomataceae/química , Pigmentação , Árvores , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Plant Cell Physiol ; 57(3): 642-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880818

RESUMO

Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond senescence-associated Chl degradation that, when compromised, affects isoprenoid and carbon metabolism which ultimately alters the fruit's nutraceutical content.


Assuntos
Carbono/metabolismo , Suplementos Nutricionais/análise , Técnicas de Silenciamento de Genes , Hidrolases/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Vias Biossintéticas/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Cromanos/metabolismo , Genes de Plantas , Solanum lycopersicum/enzimologia , Fotossíntese , Filogenia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/metabolismo , Tocoferóis/metabolismo
4.
J Exp Bot ; 64(8): 2449-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599271

RESUMO

Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato.


Assuntos
Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Ascórbico/metabolismo , Parede Celular/química , Clonagem Molecular , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Solanum lycopersicum/química , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Microscopia Confocal , Pectinas/análise , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Elementos Silenciadores Transcricionais/genética , Elementos Silenciadores Transcricionais/fisiologia , Ácidos Urônicos/metabolismo
5.
J Exp Bot ; 62(11): 3781-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21527625

RESUMO

Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, ß, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.


Assuntos
Proteínas de Plantas/genética , Locos de Características Quantitativas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Vitamina E/biossíntese , Clonagem Molecular , DNA Complementar , Frutas/química , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Solanum lycopersicum/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Seleção Genética , Alinhamento de Sequência , Especificidade da Espécie , Vitamina E/genética
6.
BMC Evol Biol ; 7: 34, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17343755

RESUMO

BACKGROUND: Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum. RESULTS: Tnt1-related sequences were amplified from total genomic DNA using a PCR-based approach. Purified fragments were cloned and sequenced, and clustering analysis revealed three groups that differ in their U3 region. Using a network approach with a total of 453 non-redundant sequences isolated from Solanum (197), Nicotiana (140) and Lycopersicon (116) species, it is demonstrated that the Tnt1 superfamily can be treated as a population to resolve previous phylogenetic multifurcations. The resulting RNAseH network revealed that sequences group according to the Solanaceae genus, supporting a strong association with the host genome, whereas tracing the U3 region sequence association characterises the modular evolutionary pattern within the Tnt1 superfamily. Within each genus, and irrespective of species, nearly 20% of Tnt1 sequences analysed are identical, indicative of being part of an active copy. The network approach enabled the identification of putative "master" sequences and provided evidence that within a genus these master sequences are associated with distinct U3 regions. CONCLUSION: The results presented here support the hypothesis that the Tnt1 superfamily was present early in the evolution of Solanaceae. The evidence also suggests that the RNAseH region of Tnt1 became fixed at the host genus level whereas, within each genus, propagation was ensured by the diversification of the U3 region. Different selection pressures seemed to have acted on the U3 and RNAseH modules of ancestral Tnt1 elements, probably due to the distinct functions of these regions in the retrotransposon life cycle, resulting in both co evolution and adaptation of the element population with its host.


Assuntos
Genes de Plantas , Filogenia , Retroelementos , Solanum/genética , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Nucleolar Pequeno/genética , Ribonuclease H/genética , Alinhamento de Sequência , Especificidade da Espécie , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA