Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Sci ; 9(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430984

RESUMO

Anxiety disorders are the most common psychological disorders worldwide resulting in a great demand of adequate and cost-effective treatment. New short-term interventions can be used as an effective adjunct or alternative to pharmaco- and psychotherapy. One of these approaches is therapeutic tapping. It combines somatic stimulation of acupressure points with elements from Cognitive Behavioral Therapy (CBT). Tapping reduces anxiety symptoms after only one session. Anxiety is associated with a deficient emotion regulation for threatening stimuli. These deficits are compensated e.g., by CBT. Whether Tapping can also elicit similar modulations and which dynamic neural correlates are affected was subject to this study. Anxiety patients were assessed listening to pseudowords with a different emotional prosody (happy, angry, fearful, and neutral) prior and after one Tapping session. The emotion-related component Late Positive Potential (LPP) was investigated via electroencephalography. Progressive Muscle Relaxation (PMR) served as control intervention. Results showed LPP reductions for negative stimuli after the interventions. Interestingly, PMR influenced fearful and Tapping altered angry prosody. While PMR generally reduced arousal for fearful prosody, Tapping specifically affected fear-eliciting, angry stimuli, and might thus be able to reduce anxiety symptoms. Findings highlight the efficacy of Tapping and its impact on neural correlates of emotion regulation.

2.
Brain ; 139(Pt 6): 1800-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190021

RESUMO

SEE CAPPA DOI101093/BRAIN/AWW090 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : The phonological structure of speech supports the highly automatic mapping of sound to meaning. While it is uncontroversial that phonotactic knowledge acts upon lexical access, it is unclear at what stage these combinatorial rules, governing phonological well-formedness in a given language, shape speech comprehension. Moreover few studies have investigated the neuronal network affording this important step in speech comprehension. Therefore we asked 70 participants-half of whom suffered from a chronic left hemispheric lesion-to listen to 252 different monosyllabic pseudowords. The material models universal preferences of phonotactic well-formedness by including naturally spoken pseudowords and digitally reversed exemplars. The latter partially violate phonological structure of all human speech and are rich in universally dispreferred phoneme sequences while preserving basic auditory parameters. Language-specific constraints were modelled in that half of the naturally spoken pseudowords complied with the phonotactics of the native language of the monolingual participants (German) while the other half did not. To ensure universal well-formedness and naturalness, the latter stimuli comply with Slovak phonotactics and all stimuli were produced by an early bilingual speaker. To maximally attenuate lexico-semantic influences, transparent pseudowords were avoided and participants had to detect immediate repetitions, a task orthogonal to the contrasts of interest. The results show that phonological 'well-formedness' modulates implicit processing of speech at different levels: universally dispreferred phonological structure elicits early, medium and late latency differences in the evoked potential. On the contrary, the language-specific phonotactic contrast selectively modulates a medium latency component of the event-related potentials around 400 ms. Using a novel event-related potential-lesion approach allowed us to furthermore supply first evidence that implicit processing of these different phonotactic levels relies on partially separable brain areas in the left hemisphere: contrasting forward to reversed speech the approach delineated an area comprising supramarginal and angular gyri. Conversely, the contrast between legal versus illegal phonotactics consistently projected to anterior and middle portions of the middle temporal and superior temporal gyri. Our data support the notion that phonological structure acts on different stages of phonologically and lexically driven steps of speech comprehension. In the context of previous work we propose context-dependent sensitivity to different levels of phonotactic well-formedness.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Dominância Cerebral , Eletroencefalografia , Idioma , Psicoacústica , Percepção da Fala/fisiologia , Estimulação Acústica , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Sinais (Psicologia) , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
J Neurosci ; 29(47): 14726-33, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19940167

RESUMO

Understanding the rapidly developing building blocks of speech perception in infancy requires a close look at the auditory prerequisites for speech sound processing. Pioneering studies have demonstrated that hemispheric specializations for language processing are already present in early infancy. However, whether these computational asymmetries can be considered a function of linguistic attributes or a consequence of basic temporal signal properties is under debate. Several studies in adults link hemispheric specialization for certain aspects of speech perception to an asymmetry in cortical tuning and reveal that the auditory cortices are differentially sensitive to spectrotemporal features of speech. Applying concurrent electrophysiological (EEG) and hemodynamic (near-infrared spectroscopy) recording to newborn infants listening to temporally structured nonspeech signals, we provide evidence that newborns process nonlinguistic acoustic stimuli that share critical temporal features with language in a differential manner. The newborn brain preferentially processes temporal modulations especially relevant for phoneme perception. In line with multi-time-resolution conceptions, modulations on the time scale of phonemes elicit strong bilateral cortical responses. Our data furthermore suggest that responses to slow acoustic modulations are lateralized to the right hemisphere. That is, the newborn auditory cortex is sensitive to the temporal structure of the auditory input and shows an emerging tendency for functional asymmetry. Hence, our findings support the hypothesis that development of speech perception is linked to basic capacities in auditory processing. From birth, the brain is tuned to critical temporal properties of linguistic signals to facilitate one of the major needs of humans: to communicate.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Percepção Auditiva/fisiologia , Percepção da Fala/fisiologia , Percepção do Tempo/fisiologia , Comportamento Verbal/fisiologia , Estimulação Acústica , Dominância Cerebral/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Recém-Nascido , Idioma , Masculino , Testes Neuropsicológicos , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA