Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 30(2): 555-570.e7, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940496

RESUMO

PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.


Assuntos
Fibrose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fibrose/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
2.
Cell Cycle ; 11(7): 1383-92, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22421146

RESUMO

Oncogene-induced senescence (OIS) is characterized by permanent growth arrest and the acquisition of a secretory, pro-inflammatory state. Increasingly, OIS is viewed as an important barrier to tumorgenesis. Surprisingly, relatively little is known about the metabolic changes that accompany and therefore may contribute to OIS. Here, we have performed a metabolomic and bioenergetic analysis of Ras-induced senescence. Profiling approximately 300 different intracellular metabolites reveals that cells that have undergone OIS develop a unique metabolic signature that differs markedly from cells undergoing replicative senescence. A number of lipid metabolites appear uniquely increased in OIS cells, including a marked increase in the level of certain intracellular long chain fatty acids. Functional studies reveal that this alteration in the metabolome reflects substantial changes in overall lipid metabolism. In particular, Ras-induced senescent cells manifest a decline in lipid synthesis and a significant increase in fatty acid oxidation. Increased fatty acid oxidation results in an unexpectedly high rate of basal oxygen consumption in cells that have undergone OIS. Pharmacological or genetic inhibition of carnitine palmitoyltransferase 1, the rate-limiting step in mitochondrial fatty acid oxidation, restores a pre-senescent metabolic rate and, surprisingly, selectively inhibits the secretory, pro-inflammatory state that accompanies OIS. Thus, Ras-induced senescent cells demonstrate profound alterations in their metabolic and bioenergetic profiles, particularly with regards to the levels, synthesis and oxidation of free fatty acids. Furthermore, the inflammatory phenotype that accompanies OIS appears to be related to these underlying changes in cellular metabolism.


Assuntos
Senescência Celular/genética , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Oncogenes , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/biossíntese , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Metabolômica/métodos , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA