Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropsychologia ; 184: 108559, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37040848

RESUMO

Auditory steady-state responses (ASSR) are induced from the brainstem to the neocortex when humans hear periodic amplitude-modulated tonal signals. ASSRs have been argued to be a key marker of auditory temporal processing and pathological reorganization of ASSR - a biomarker of neurodegenerative disorders. However, most of the earlier studies reporting the neural basis of ASSRs were focused on looking at individual brain regions. Here, we seek to characterize the large-scale directed information flow among cortical sources of ASSR entrained by 40 Hz external signals. Entrained brain rhythms with power peaking at 40 Hz were generated using both monaural and binaural tonal stimulation. First, we confirm the presence of ASSRs and their well-known right hemispheric dominance during binaural and both monaural conditions. Thereafter, reconstruction of source activity employing individual anatomy of the participant and subsequent network analysis revealed that while the sources are common among different stimulation conditions, differential levels of source activation and differential patterns of directed information flow among sources underlie processing of binaurally and monaurally presented tones. Particularly, we show bidirectional interactions involving the right superior temporal gyrus and inferior frontal gyrus underlie right hemispheric dominance of 40 Hz ASSR during both monaural and binaural conditions. On the other hand, for monaural conditions, the strength of inter-hemispheric flow from left primary auditory areas to right superior temporal areas followed a pattern that comply with the generally observed contralateral dominance of sensory signal processing.


Assuntos
Córtex Auditivo , Audição , Humanos , Estimulação Acústica , Audição/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva , Lobo Temporal , Potenciais Evocados Auditivos/fisiologia , Eletroencefalografia
2.
Cereb Cortex ; 31(4): 1970-1986, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33253367

RESUMO

A complete picture of how subcortical nodes, such as the thalamus, exert directional influence on large-scale brain network interactions across age remains elusive. Using directed functional connectivity and weighted net causal outflow on resting-state fMRI data, we provide evidence of a comprehensive reorganization within and between neurocognitive networks (default mode: DMN, salience: SN, and central executive: CEN) associated with age and thalamocortical interactions. We hypothesize that thalamus subserves both modality-specific and integrative hub role in organizing causal weighted outflow among large-scale neurocognitive networks. To this end, we observe that within-network directed functional connectivity is driven by thalamus and progressively weakens with age. Secondly, we find that age-associated increase in between CEN- and DMN-directed functional connectivity is driven by both the SN and the thalamus. Furthermore, left and right thalami act as a causal integrative hub exhibiting substantial interactions with neurocognitive networks with aging and play a crucial role in reconfiguring network outflow. Notably, these results were largely replicated on an independent dataset of matched young and old individuals. Our findings strengthen the hypothesis that the thalamus is a key causal hub balancing both within- and between-network connectivity associated with age and maintenance of cognitive functioning with aging.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Tálamo/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto Jovem
3.
Front Neurol ; 7: 123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551273

RESUMO

Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The poststroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS) techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG) and functional-near-infrared spectroscopy (fNIRS) can be leveraged for Brain State Dependent Electrotherapy (BSDE). In this hypothesis and theory article, we propose a computational approach based on excitation-inhibition (E-I) balance hypothesis to objectively quantify the poststroke individual brain state using online fNIRS-EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local E-I (that is the ratio of Glutamate/GABA), which may be targeted with NIBS using a computational pipeline that includes individual "forward models" to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons, which can be captured with E-I-based brain models. Furthermore, E-I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing, which can then be implicated in changes in function. We first review the evidence that shows how this local imbalance between E-I leading to functional dysfunction can be restored in targeted sites with NIBS (motor cortex and somatosensory cortex) resulting in large-scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Second, we show evidence how BSDE based on E-I balance hypothesis may target a specific brain site or network as an adjuvant treatment. Hence, computational neural mass model-based integration of neurostimulation with online neuroimaging systems may provide less ambiguous, robust optimization of NIBS, and its application in neurological conditions and disorders across individual patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA