Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 89(1): 46-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35253147

RESUMO

The flavonoid constituents of Aesculus wilsonii, a source of the Chinese medicinal drug Suo Luo Zi, and their in vitro anti-inflammatory effects were investigated. Fifteen flavonoids, including aeswilflavonosides IA-IC (1:  - 3: ) and aeswilflavonosides IIA-IIE (4:  - 8: ), along with seven known derivatives were isolated from a seed extract. Their structures were elucidated by extensive spectroscopic methods, acid and alkaline hydrolysis, and calculated electronic circular dichroism spectra. Among them, compounds 3: and 7: possess a 5-[2-(carboxymethyl)-5-oxocyclopent-yl]pent-3-enylate or oleuropeoylate substituent, respectively, which are rarely reported in flavonoids. Compounds 2, 3, 7: , and 12:  - 15: were found to inhibit lipopolysaccharide-induced nitric oxide production in RAW 264.7 cell lines. In a mechanistic assay, the flavonoid glycosides 2, 3: , and 7: reduced the expressions of interleukin-6 and tumor necrosis factor-alpha induced by lipopolysaccharide. Further investigations suggest that 2: and 3: downregulated the protein expression of tumor necrosis factor-alpha and interleukin-6 by inhibiting the phosphorylation of p38. Compound 7: was found to reduce the production of inducible nitric oxide synthase, and the secretion of tumor necrosis factor-alpha and interleukin-6 through inhibiting nuclear factor kappa-light-chain-enhancer of activated B signaling pathway. Compounds 2, 3: , and 7: possessed moderate inhibitory activity on the expression of signal transducer and activator of transcription-3. Taken together, the data indicate that the flavonoid glycosides of A. wilsonii seeds exhibit nitric oxide release inhibitory activity through mitogen-activated protein kinase (p38), nuclear factor kappa-light-chain-enhancer of activated B, and signal transducer and activator of transcription-3 cross-talk signaling pathways.


Assuntos
Aesculus , NF-kappa B , NF-kappa B/metabolismo , Flavonoides/farmacologia , Aesculus/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Transdução de Sinais , Óxido Nítrico Sintase Tipo II/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 67(7): 634-639, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257318

RESUMO

The mango tree (Mangifera indica L.) is a tropical, perennial, woody evergreen plant belonging to the Anacardiaceae. In traditional medicine, dried mango tree leaves were considered useful in treating diabetes and respiratory infections. In this paper, we review the phytochemical research on mango leaves and the mechanisms of benzophenones in lipid metabolism regulation. Thirty-six benzophenones have been isolated from mango leaves; among them, mangiferin is the major compound. Structure-activity relationships of benzophenones in lipid accumulation and the mechanisms of action of mangiferin in lipid metabolism are summarized. After oral administration, mangiferin is partly converted to its active metabolite, northyariol, which contributes to the activation of sirtuin-1 and liver kinase B1 and increases the intracellular AMP level and AMP/adenosine triphosphate ratio, followed by AMP-activated protein kinase phosphorylation, leading to increased phosphorylation of sterol regulatory element-binding protein-1c. Current evidence supports ethnopharmacological uses of mango leaves in diabetes and points toward potential future applications.


Assuntos
Benzofenonas/química , Mangifera/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mangifera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Relação Estrutura-Atividade , Xantonas/administração & dosagem , Xantonas/química , Xantonas/metabolismo , Xantonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA