Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(50): 47723-47734, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144114

RESUMO

The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.

2.
Nutr Res ; 61: 102-108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30522845

RESUMO

Despite the growing awareness regarding lutein's putative roles in eyes and brain, its pharmacokinetics and tissue distribution in primates have been poorly understood. We hypothesized that 13C-lutein will be differentially distributed into tissues of an adult rhesus macaque (Macaca mulatta) 3 days following a single oral dose. After a year of prefeeding a diet supplemented with unlabeled lutein (1 µmol/kg/d), a 19-year-old female was dosed with 1.92 mg of highly enriched 13C-lutein. Tissues of a nondosed, lutein-fed monkey were used as a reference for natural abundance of 13C-lutein. On the third day postdose, plasma and multiple tissues were collected. Lutein was quantified by high-performance liquid chromatography-photodiode array detector, and 13C-lutein tissue enrichment was determined by liquid chromatography quadrupole time-of-flight mass spectrometry. In the tissues of a reference monkey, 12C-lutein with natural abundance of 13C-lutein was detectable. In the dosed monkey, highly enriched 13C-lutein was observed in all analyzed tissues except for the macular and peripheral retina, with the highest concentrations in the liver followed by the adrenal gland and plasma. 13C-lutein accumulated differentially across 6 brain regions. In adipose depots, 13C-lutein was observed, with the highest concentrations in the axillary brown adipose tissues. In summary, we evaluated 13C-lutein tissue distribution in a nonhuman primate following a single dose of isotopically labeled lutein. These results show that tissue distribution 3 days following a dose of lutein varied substantially dependent on tissue type.


Assuntos
Tecido Adiposo Marrom/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo , Luteína/farmacocinética , Retina/metabolismo , Administração Oral , Animais , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão/métodos , Dieta , Feminino , Humanos , Luteína/metabolismo , Macaca mulatta , Espectrometria de Massas/métodos , Modelos Animais , Projetos Piloto , Valores de Referência , Distribuição Tecidual
3.
Analyst ; 142(23): 4476-4485, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29098220

RESUMO

Measurement, identification, and quantitation of endogenous peptides in tissue samples by mass spectrometry (MS) contribute to our understanding of the complex molecular mechanisms of numerous biological phenomena. For accurate results, it is essential to arrest the postmortem degradation of ubiquitous proteins in samples prior to performing peptidomic measurements. Doing so ensures that the detection of endogenous peptides, typically present at relatively low levels of abundance, is not overwhelmed by protein degradation products. Heat stabilization has been shown to inactivate the enzymes in tissue samples and minimize the presence of protein degradation products in the subsequent peptide extracts. However, the efficacy of different heat treatments to preserve the integrity of full-length endogenous peptides has not been well documented; prior peptidomic studies of heat stabilization methods have not distinguished between the full-length (mature) and numerous truncated (possible artifacts of sampling) forms of endogenous peptides. We show that thermal sample treatment via rapid conductive heat transfer is effective for detection of mature endogenous peptides in fresh and frozen rodent brain tissues. Freshly isolated tissue processing with the commercial Stabilizor T1 heat stabilization system resulted in the confident identification of 65% more full-length mature neuropeptides compared to widely used sample treatment in a hot water bath. This finding was validated by a follow-up quantitative multiple reaction monitoring MS analysis of select neuropeptides. The rapid conductive heating in partial vacuum provided by the Stabilizor T1 effectively reduces protein degradation and decreases the chemical complexity of the sample, as assessed by determining total protein content. This system enabled the detection, identification, and quantitation of neuropeptides related to 22 prohormones expressed in individual rat hypothalami and suprachiasmatic nuclei.


Assuntos
Hipotálamo/química , Neuropeptídeos/análise , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Temperatura Alta , Masculino , Proteólise , Proteoma , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
Exp Biol Med (Maywood) ; 242(3): 305-315, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27798119

RESUMO

Lutein is a xanthophyll abundant in nature and most commonly present in the human diet through consumption of leafy green vegetables. With zeaxanthin and meso-zeaxanthin, lutein is a component of the macular pigment of the retina, where it protects against photooxidation and age-related macular degeneration. Recent studies have suggested that lutein may positively impact cognition throughout the lifespan, but outside of the retina, the deposition, metabolism, and function(s) of lutein are poorly understood. Using a novel botanical cell culture system ( Daucus carota), the present study aimed to produce a stable isotope lutein tracer for use in future investigations of dietary lutein distribution and metabolism. Carrot cultivars were initiated into liquid solution culture, lutein production conditions optimized, and uniformly labeled 13C-glucose was provided as the sole media carbon source for four serial growth cycles. Lutein yield was 2.58 ± 0.24 µg/g, and mass spectrometry confirmed high enrichment of 13C: 64.9% of lutein was uniformly labeled and 100% of lutein was labeled on at least 37 of 40 possible carbons. Purification of carrot extracts yielded a lutein dose of 1.92 mg with 96.0 ± 0.60% purity. 13C-lutein signals were detectable in hepatic extracts of an adult rhesus macaque monkey ( Macaca mulatta) dosed with 13C-lutein, but not in hepatic samples collected from control animals. This novel botanical biofactory approach can be used to produce sufficient quantities of highly enriched and pure 13C-lutein doses for use in tracer studies investigating lutein distribution, metabolism, and function.


Assuntos
Isótopos de Carbono/química , Daucus carota/química , Luteína/isolamento & purificação , Extratos Vegetais/química , Coloração e Rotulagem/métodos , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Glucose/química , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Luteína/química , Macaca mulatta , Espectrometria de Massas
5.
Behav Brain Res ; 320: 97-112, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916687

RESUMO

It is widely believed that diet can influence the onset and severity of cognitive aging, but the optimal combination of micronutrients and molecular and cellular mechanisms remain elusive. The purpose of this study was to compare the effects of eight distinct diets, consisting of various concentrations of selected micronutrients, on learning and memory as well as markers of neuronal plasticity, and metabolic and neuro-immune status of the aged hippocampus. Eighteen-month-old male and female C57BL/6J mice were fed the diets for 16 weeks, followed by learning and memory trials on the active avoidance task. Number of immature neurons were measured by immunohistochemical detection of doublecortin (DCX+) in the granule layer of the dentate gyrus. Amount of mitochondrial DNA (mtDNA) and gene expression of molecular markers of mitochondrial biogenesis (Ppargc1α, Sirt1, Tfam), and neuroinflammation (IL-10, Alox15, Ptgs2, IL-1ß, IL-6 and Tnf) were assessed by quantitative real time polymerase chain reaction (qRT-PCR) of hippocampal samples. Tissue levels of selected micronutrients and a number of metabolites were measured by liquid chromatography-mass spectrometry. The diet supplemented with RRR d-alpha tocopheryl acetate, citicholine, 5-methyltetrahydrofolic acid, quercetin and the n-3 fatty acid phosphatidylserine-docosahexaenoic acid, improved performance on the active avoidance learning and memory task compared to all the other less-complex diets. This diet also increased IL-10 expression and attenuated the age-related change in mtDNA content in the hippocampus without affecting metabolite levels. Results suggest cognitive benefits of wholesome diets are partially mediated through combined antioxidant and anti-inflammatory activities of optimized mixtures of micronutrients.


Assuntos
Envelhecimento , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Micronutrientes/farmacologia , Fatores Etários , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Variações do Número de Cópias de DNA/fisiologia , DNA Mitocondrial/genética , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Fatores Sexuais
6.
Appl Physiol Nutr Metab ; 41(2): 181-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26761622

RESUMO

Aging leads to sarcopenia and loss of physical function. We examined whether voluntary wheel running, when combined with dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) and ß-alanine (ß-ALA), could improve muscle function and alter gene expression in the gastrocnemius of aged mice. Seventeen-month-old BALB/cByJ mice were given access to a running wheel or remained sedentary for 41 days while receiving either AIN-93M (standard feed) or AIN-93M containing 1.5 mg·kg(-1) EGCG and 3.43 mg·kg(-1) ß-ALA. Mice underwent tests over 11 days from day 29 to day 39 of the study period, including muscle function testing (grip strength, treadmill exhaustive fatigue, rotarod). Following a rest day, mice were euthanized and gastrocnemii were collected for analysis of gene expression by quantitative PCR. Voluntary wheel running (VWR) improved rotarod and treadmill exhaustive fatigue performance and maintained grip strength in aged mice, while dietary intervention had no effect. VWR increased gastrocnemius expression of several genes, including those encoding interleukin-6 (Il6, p = 0.001), superoxide dismutase 1 (Sod1, p = 0.046), peroxisome proliferator-activated receptor gamma coactivator 1-α (Ppargc1a, p = 0.013), forkhead box protein O3 (Foxo3, p = 0.005), and brain-derived neurotrophic factor (Bdnf, p = 0.008), while reducing gastrocnemius levels of the lipid peroxidation marker 4-hydroxynonenal (p = 0.019). Dietary intervention alone increased gastrocnemius expression of Ppargc1a (p = 0.033) and genes encoding NAD-dependent protein deacetylase sirtuin-1 (Sirt1, p = 0.039), insulin-like growth factor I (Igf1, p = 0.003), and macrophage marker CD11b (Itgam, p = 0.016). Exercise and a diet containing ß-ALA and EGCG differentially regulated gene expression in the gastrocnemius of aged mice, while VWR but not dietary intervention improved muscle function. We found no synergistic effects between dietary intervention and VWR.


Assuntos
Catequina/análogos & derivados , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Corrida/fisiologia , beta-Alanina/farmacologia , Fatores Etários , Animais , Catequina/administração & dosagem , Catequina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , beta-Alanina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA