Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
5.
J Med Chem ; 59(13): 6025-6, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27322073

RESUMO

One hurdle to treating tuberculosis could be that it is so difficult to kill nonreplicating subpopulations of the causative pathogens. This work describes two new cephalosporin derivatives that specifically target this population of Mycobacterium tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Descoberta de Drogas , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia
6.
mBio ; 6(3): e00253-15, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25944857

RESUMO

UNLABELLED: A novel type of antibacterial screening method, a target mechanism-based whole-cell screening method, was developed to combine the advantages of target mechanism- and whole-cell-based approaches. A mycobacterial reporter strain with a synthetic phenotype for caseinolytic protease (ClpP1P2) activity was engineered, allowing the detection of inhibitors of this enzyme inside intact bacilli. A high-throughput screening method identified bortezomib, a human 26S proteasome drug, as a potent inhibitor of ClpP1P2 activity and bacterial growth. A battery of secondary assays was employed to demonstrate that bortezomib indeed exerts its antimicrobial activity via inhibition of ClpP1P2: Down- or upmodulation of the intracellular protease level resulted in hyper- or hyposensitivity of the bacteria, the drug showed specific potentiation of translation error-inducing aminoglycosides, ClpP1P2-specific substrate WhiB1 accumulated upon exposure, and growth inhibition potencies of bortezomib derivatives correlated with ClpP1P2 inhibition potencies. Furthermore, molecular modeling showed that the drug can bind to the catalytic sites of ClpP1P2. This work demonstrates the feasibility of target mechanism-based whole-cell screening, provides chemical validation of ClpP1P2 as a target, and identifies a drug in clinical use as a new lead compound for tuberculosis therapy. IMPORTANCE: During the last decade, antibacterial drug discovery relied on biochemical assays, rather than whole-cell approaches, to identify molecules that interact with purified target proteins derived by genomics. This approach failed to deliver antibacterial compounds with whole-cell activity, either because of cell permeability issues that medicinal chemistry cannot easily fix or because genomic data of essentiality insufficiently predicted the vulnerability of the target identified. As a consequence, the field largely moved back to a whole-cell approach whose main limitation is its black-box nature, i.e., that it requires trial-and-error chemistry because the cellular target is unknown. We developed a novel type of antibacterial screening method, target mechanism-based whole-cell screening, to combine the advantages of both approaches. We engineered a mycobacterial reporter strain with a synthetic phenotype allowing us to identify inhibitors of the caseinolytic protease (ClpP1P2) inside the cell. This approach identified bortezomib, an anticancer drug, as a specific inhibitor of ClpP1P2. We further confirmed the specific "on-target" activity of bortezomib by independent approaches including, but not limited to, genetic manipulation of the target level (over- and underexpressing strains) and by establishing a dynamic structure-activity relationship between ClpP1P2 and growth inhibition. Identifying an "on-target" compound is critical to optimize the efficacy of the compound without compromising its specificity. This work demonstrates the feasibility of target mechanism-based whole-cell screening methods, validates ClpP1P2 as a druggable target, and delivers a lead compound for tuberculosis therapy.


Assuntos
Antituberculosos/isolamento & purificação , Bortezomib/isolamento & purificação , Mycobacterium/efeitos dos fármacos , Mycobacterium/enzimologia , Inibidores de Proteases/isolamento & purificação , Serina Endopeptidases/metabolismo , Antituberculosos/farmacologia , Bortezomib/farmacologia , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos , Ensaios de Triagem em Larga Escala , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/química
7.
PLoS One ; 8(9): e75245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086479

RESUMO

Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/fisiologia , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/química , Policetídeo Sintases/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA