Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128042, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977476

RESUMO

This work describes the chemical and structural characterization of a lignin-rich residue from the bioethanol production of olive stones and its use for nanostructures development by electrospinning and castor oil structuring. The olive stones were treated by sequential acid/steam explosion pretreatment, further pre-saccharification using a hydrolytic enzyme, and simultaneous saccharification and fermentation (PSSF). The chemical composition of olive stone lignin-rich residue (OSL) was evaluated by standard analytical methods, showing a high lignin content (81.3 %). Moreover, the structural properties were determined by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. OSL showed a predominance of ß-ß' resinol, followed by ß-O-4' alkyl aryl ethers and ß-5' phenylcoumaran substructures, high molecular weight, and low S/G ratio. Subsequently, electrospun nanostructures were obtained from solutions containing 20 wt% OSL and cellulose triacetate with variable weight ratios in N, N-Dimethylformamide/Acetone blends and characterized by scanning electron microscopy. Their morphologies were highly dependent on the rheological properties of polymeric solutions. Gel-like dispersions can be obtained by dispersing the electrospun OSL/CT bead nanofibers and uniform nanofiber mats in castor oil. The rheological properties were influenced by the membrane concentration and the OSL:CT weight ratio, as well as the morphology of the electrospun nanostructures.


Assuntos
Nanofibras , Olea , Lignina/química , Olea/química , Óleo de Rícino , Polímeros , Nanofibras/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA