Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Nutr ; 41(10): 2244-2263, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36081299

RESUMO

Low muscle mass and malnutrition are prevalent conditions among adults of all ages, with any body weight or body mass index, and with acute or chronic conditions, including COVID-19. This article synthesizes the latest research advancements in muscle health and malnutrition, and their impact on immune function, and clinical outcomes. We provide a toolkit of illustrations and scientific information that healthcare professionals can use for knowledge translation, educating patients about the importance of identifying and treating low muscle mass and malnutrition. We focus on the emerging evidence of mitochondrial dysfunction in the context of aging and disease, as well as the cross-talk between skeletal muscle and the immune system. We address the importance of myosteatosis as a component of muscle composition, and discuss direct, indirect and surrogate assessments of muscle mass including ultrasound, computerized tomography, deuterated creatine dilution, and calf circumference. Assessments of muscle function are also included (handgrip strength, and physical performance tests). Finally, we address nutrition interventions to support anabolism, reduce catabolism, and improve patient outcomes. These include protein and amino acids, branched-chain amino acids, with a focus on leucine; ß-hydroxy-ß-methylbutyrate (HMB), vitamin D; n-3 polyunsaturated fatty acids (n-3 PUFA), polyphenols, and oral nutritional supplements. We concluded with recommendations for clinical practice and a call for action on research focusing on evaluating the impact of body composition assessments on targeted nutrition interventions, and consequently their ability to improve patient outcomes.


Assuntos
COVID-19 , Ácidos Graxos Ômega-3 , Desnutrição , Adulto , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada , Creatina , Atenção à Saúde , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Força da Mão , Humanos , Leucina , Desnutrição/tratamento farmacológico , Força Muscular , Músculo Esquelético/fisiologia , Valeratos , Vitamina D/uso terapêutico
2.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35076711

RESUMO

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Assuntos
Doenças Desmielinizantes , Epilepsia Tipo Ausência , Animais , Córtex Cerebral/fisiologia , Cuprizona/metabolismo , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Neurônios/fisiologia , Nucleotídeos Cíclicos/metabolismo , Convulsões , Tálamo/fisiologia
3.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576251

RESUMO

Vitamin E is often associated with health benefits, such as antioxidant, anti-inflammatory and cholesterol-lowering effects. These properties make its supplementation a suitable therapeutic approach in neurodegenerative disorders, for example, Alzheimer's or Parkinson's disease. However, trials evaluating the effects of vitamin E supplementation are inconsistent. In randomized controlled trials, the observed associations often cannot be substantiated. This could be due to the wide variety of study designs regarding the dosage and duration of vitamin E supplementation. Furthermore, genetic variants can influence vitamin E uptake and/or metabolism, thereby distorting its overall effect. Recent studies also show adverse effects of vitamin E supplementation regarding Alzheimer's disease due to the increased synthesis of amyloid ß. These diverse effects may underline the inhomogeneous outcomes associated with its supplementation and argue for a more thoughtful usage of vitamin E. Specifically, the genetic and nutritional profile should be taken into consideration to identify suitable candidates who will benefit from supplementation. In this review, we will provide an overview of the current knowledge of vitamin E supplementation in neurodegenerative disease and give an outlook on individualized, sustainable neuro-nutrition, with a focus on vitamin E supplementation.


Assuntos
Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Ciências da Nutrição , Estado Nutricional , Vitamina E/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes , Colesterol/química , Suplementos Nutricionais , Variação Genética , Humanos , Camundongos , Ratos
4.
Drugs ; 81(9): 1031-1063, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34086251

RESUMO

In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.


Assuntos
Esclerose Múltipla/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Nat Med ; 19(9): 1161-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23933981

RESUMO

The blood-brain barrier (BBB) is an integral part of the neurovascular unit (NVU). The NVU is comprised of endothelial cells that are interconnected by tight junctions resting on a parenchymal basement membrane ensheathed by pericytes, smooth muscle cells and a layer of astrocyte end feet. Circulating blood cells, such as leukocytes, complete the NVU. BBB disruption is common in several neurological diseases, but the molecular mechanisms involved remain largely unknown. We analyzed the role of TWIK-related potassium channel-1 (TREK1, encoded by KCNK2) in human and mouse endothelial cells and the BBB. TREK1 was downregulated in endothelial cells by treatment with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Blocking TREK1 increased leukocyte transmigration, whereas TREK1 activation had the opposite effect. We identified altered mitogen-activated protein (MAP) kinase signaling, actin remodeling and upregulation of cellular adhesion molecules as potential mechanisms of increased migration in TREK1-deficient (Kcnk2(-/-)) cells. In Kcnk2(-/-) mice, brain endothelial cells showed an upregulation of the cellular adhesion molecules ICAM1, VCAM1 and PECAM1 and facilitated leukocyte trafficking into the CNS. Following the induction of experimental autoimmune encephalomyelitis (EAE) by immunization with a myelin oligodendrocyte protein (MOG)35-55 peptide, Kcnk2(-/-) mice showed higher EAE severity scores that were accompanied by increased cellular infiltrates in the central nervous system (CNS). The severity of EAE was attenuated in mice given the amyotrophic lateral sclerosis drug riluzole or fed a diet enriched with linseed oil (which contains the TREK-1 activating omega-3 fatty acid α-linolenic acid). These beneficial effects were reduced in Kcnk2(-/-) mice, suggesting TREK-1 activating compounds may be used therapeutically to treat diseases related to BBB dysfunction.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Actinas/metabolismo , Animais , Anticonvulsivantes/farmacologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/imunologia , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas , Regulação para Baixo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Células HEK293 , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Interferon-alfa/farmacologia , Leucócitos/metabolismo , Óleo de Semente do Linho/administração & dosagem , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Canais de Potássio de Domínios Poros em Tandem/genética , Riluzol/farmacologia , Migração Transendotelial e Transepitelial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA