RESUMO
Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.
Assuntos
Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Chalconas/farmacologia , Chalconas/uso terapêutico , Cisplatino/efeitos adversos , Macrófagos/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Lipoxinas/antagonistas & inibidores , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Células Cultivadas , Chalconas/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Glycyrrhiza/química , Inflamação , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Fitoterapia , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/fisiologia , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Receptores de Lipoxinas/fisiologia , Regulação para Cima/efeitos dos fármacosRESUMO
There is increasing evidence that Chronic Kidney Disease (CKD) can cause intestinal dysfunction, which in turn aggravates the progression of kidney disease. Studies have shown that the immune response of macrophage plays an important role in promoting inflammation in kidney and intestine of CKD. Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) is a widely used traditional medicine for the treatment of CKD in China, however, the underlying mechanism is largely unclear. In this study, we aimed to explore the role of A&P and Bifidobacterium combination treatment in regulation of inflammatory response of macrophage in kidney and intestine of CKD mouse, as well as the potential molecular mechanism. We established a CKD mouse model with 5/6 nephrectomy and a macrophage inflammatory cellular model with LPS and urotoxin in vivo and in vitro. The results showed that A&P combined with Bifidobacterium significantly reduced the expression and secretion of IL-1ß, IL-6, TNFα, and MCP-1 in kidney and blood, as well as in inflammatory macrophage. Interestingly, A&P combined with Bifidobacterium strongly improved the intestinal flora and protected the intestinal barrier. Notably, the maintainer of macrophage polarization, Mincle, was activated in kidney and intestine of CKD mouse as well as in urotoxin stimulated macrophage, that was effectively inhibited by the treatment of A&P and Bifidobacterium combination. Overexpression of Mincle by genetic modification can abolish the inhibitory effects of A&P combined with Bifidobacterium on inflammation in urotoxin stimulated RAW264.7 cells. In summary, these findings demonstrated that A&P combined with Bifidobacterium can protect kidney against CKD by down-regulating macrophage inflammatory response in kidney and intestine via suppressing Mincle signaling, which provides a new insight in the treatment of CKD with traditional medicine.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute kidney injury (AKI) is a common disease in hospitalized patients, especially in critically ill patients. It is characterised with high morbidity and mortality, and is also an important cause of chronic kidney disease and chronic renal failure. Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound, a famous traditional Chinese medicine, consists of Astragalus propinquus Schischkin, Panax notoginseng, Angelica sinensis, Achyranthes bidentata, and Ecklonia kurome, has been widely used for the treatment of various kidney diseases in the southwest of China. However, the effects of A&P on treatment of AKI and its underlying mechanism are needed to be uncovered. AIM OF THE STUDY: Recent researches reported that Mincle (Macrophage-inducible C-type lectin) plays a key role in renal injury of AKI by regulating the expression and secretion of inflammatory cytokines on macrophage through modulating NF-κB signaling pathway. Here, we aimed to investigate the renoprotective effect of A&P on AKI and whether by inhibiting Mincle. MATERIALS AND METHODS: We established a lipopolysaccharide (LPS)-induced Bone Marrow-Derived Macrophage (BMDM) inflammatory cell model and a cisplatin-induced mouse AKI model in vitro and in vivo. Renal histopathology staining was performed to observe kidney morphology. The expression and secretion of inflammatory cytokines were detected by real-time PCR and Enzyme-linked immunosorbent assay. Western blotting was used to detect the protein levels and Flow cytometry performed to detect polarization of macrophage. RESULTS: The results showed that A&P significantly reduced the mRNA expression of IL-1ß, IL-6, TNFα and MCP-1 in LPS-stimulated BMDM cells, and secretion of IL-1ß and IL-6 in supernatant. The same results were found in Cisplatin-induced AKI kidney and serum after treatment with A&P. The data also showed that A&P strongly reduced the mRNA and protein levels of Mincle in vitro and vivo, and also inhibited the activation of Syk and NF-κB. Notably, A&P down-regulated the M1 macrophage marker iNOS, which may relate to the inhibition of Mincle. Interestingly, both overexpression of Mincle by transfection of pcDNA3.1-Mincle plasmid and administration of TDB (a ligand of Mincle) can significantly abolished the A&P-inhibited inflammation in BMDM, suggesting Mincle pathway play a key role in macrophage inflammation in AKI. CONCLUSION: Our findings indicated that A&P protected kidney from inhibiting inflammation through down-regulating of Mincle pathway in macrophage in AKI. It provides a potential medicine compound for the treatment of AKI.