Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 316: 115281, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588666

RESUMO

In this work, the efficiency of the ubiquitous fungus Penicillium sp. 8L2 to remove Ag(I) ions from synthetic solutions and its potential to synthesize silver nanoparticles (AgNPs) was evaluated. Using a Rotatable Central Composite Design pH and biomass concentration were optimized. Maximum biosorption capacity 51.53 mg/g, by Langmuir model, comparing favourably with other reports. The fungal biomass was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and analyzed before and after the biosorption process by different techniques: X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Ultra-High Resolution Transmission Electron Microscopy and Energy Dispersive X-ray (HR-TEM-EDX) and Ultraviolet-Visible Spectrophotometry (UV-vis). The results showed that the fungus applied several mechanisms to remove Ag(I) ions from the solution and that some of them induced the synthesis of AgNPs. This fact could be verified in the synthesis tests from the cell extract in which aqueous suspensions with high concentrations of AgNPs were obtained. These nanoparticles had diameters between 2 and 9 nm and therefore a high potential for their use as biocidal agents. The results indicated that the synthesis of nanoparticles could be an added value to the heavy metal biosorption process.


Assuntos
Nanopartículas Metálicas , Penicillium , Antibacterianos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Sci Total Environ ; 645: 533-542, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029129

RESUMO

A large amount of olive-derived biomass is generated yearly in Spain, which could be used as a potential source of bioactive compounds. The present work evaluates the recovery of natural antioxidants from olive tree pruning (OTP) and olive mill leaves (OML). For this purpose, the effect of different solvents on the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was evaluated. The solvent was found to have a significant effect (p < 0.05) on the TPC, TFC, and the DPPH, ABTS, and FRAP activity, affording similar results for the extracts from the two by-products. The extracts obtained using 50% ethanol showed high TPC (23.85 and 27.54 mg GAE/gdw for OTP and OML, respectively) and TFC (52.82 and 52.39 mg RE/gdw for OTP and OML, respectively). Also, the OTP and OML extracts exhibited notable antioxidant activity as measured by the ABTS method (45.96 and 42.71 mg TE/gdw, respectively). Using pyrolysis-gas chromatography/mass spectrometry, 30 bioactive compounds were detected in both extracts. Additionally, UPLC-DAD-ESI-MS allowed the identification of 15 compounds in the samples. Furthermore, the antioxidant extracts were found to inhibit the growth of several food pathogenic bacteria. This research demonstrates that these by-products from olive grove farming are a good source of antioxidant compounds with antibacterial properties, which have potential applications in the food and pharmaceutical industries.


Assuntos
Resíduos Industriais , Olea , Compostos Fitoquímicos/análise , Extratos Vegetais , Antioxidantes , Flavonoides , Fenóis , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA