Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 269: 70-79, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100486

RESUMO

Wax esters (WEs) and steryl esters (SEs) are minor components of sunflower oils formed by the esterification of long chain fatty alcohols and sterols to fatty acids. These compounds have similar carbon numbers and polarities making them difficult to separate using conventional chromatographic methods. In this study, electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) allowed the rapid and accurate profiling of WEs and SEs acyl moieties in total ester fractions of common and mutant sunflower oils with different fatty acid profiles. The acyl composition of both WEs and SEs partially reflected that of the oil and the high oleic background displayed the lowest level of crystallisable waxes. ESI-MS/MS complemented by GC-MS analyses revealed that SEs contain 17-30% of previously unreported methylsterol moieties. We demonstrated that these compounds are overlooked by official sterol analytical methods which may have consequences for quality control and authentication of vegetable oils prior to commercialisation.


Assuntos
Ésteres/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Esteróis/análise , Óleo de Girassol/química , Espectrometria de Massas em Tandem/métodos , Ácidos Graxos , Óleos de Plantas , Ceras
2.
J Anim Sci ; 96(3): 1084-1100, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29385605

RESUMO

The aim of this work was to study whether the dietary supplementation with soluble fiber (SF) and the reduction of the n-6/n-3 fatty acid ratio or the combination of both influences the survival, body and milk composition, and reproductive performance of rabbit does during the first four parturitions. Four diets in a 2 × 2 factorial arrangement were used with two levels of SF (7.8 vs. 13.0, on dry matter [DM] basis; high soluble fiber [HSF] and low soluble fiber [LSF]) and two different n-6/n-3 fatty acid ratios (13.4/1 vs. 3.5/1). Nulliparous does (24/diet) were inseminated 11 d after parturition. Body chemical composition and energy content of rabbit does and their performance, litter growth, and milk production were measured between birth and weaning (25 d) along four parturitions, and milk composition and fecal digestibility were also recorded. The proportion of total removed does decreased in HSF respect to LSF groups (22.9 vs. 50.0%; P = 0.005), and it tended to decrease in LSF groups when the n-6/n-3 ratio increased and in HSF groups when the n-6/n-3 ratio decreased (P = 0.059). The increase of the level of SF reduced the digestible crude protein (CP)/digestible energy ratio (by 4%; P < 0.001) and improved the digestibility of all fibrous fractions (P < 0.001). The reduction of the n-6/n-3 ratio reduced the total dietary fiber digestibility in rabbit does fed LSF diets, but it had no effect in those fed HSF diets (P = 0.043). Treatments had no effect on average daily feed intake among parturitions (P = 0.16), but the digestible CP intake among parturitions was lower in HSF than in LSF groups (P = 0.003). Treatments had no effect on the total number of kits born, litter or average kit weight at birth, or litter size at weaning, fertility, feed efficiency, total milk production, and body chemical composition and energy content of rabbit does (P ≥ 0.29). The average weight of kits at weaning of LSF_Hn-6/n-3 and HSF_Ln-6/n-3 groups decreased by 6% compared with those from the other two groups (P = 0.030). The reduction of the dietary n-6/n-3 ratio increased the milk fat content by 12% with no effect on protein and DM content (P = 0.031). The proportion of milk odd fatty acids and saturated fatty acid increased in rabbit does fed the HSF diets compared with those fed LSF diets (P ≤ 0.037) with no effect of the n-6/n-3 fatty acid ratio. In conclusion, SF reduced the replacement rate of rabbit does with no effect of the n-6/n-3 ratio, while both dietary factors modified milk composition and fatty acid profile with minor influence on litter productivity.


Assuntos
Ração Animal/análise , Fibras na Dieta/administração & dosagem , Suplementos Nutricionais , Leite/química , Coelhos/fisiologia , Reprodução/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Dieta/veterinária , Digestão/efeitos dos fármacos , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Fezes/química , Feminino , Lactação/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Gravidez
3.
J Nutr ; 146(2): 227-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791554

RESUMO

BACKGROUND: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. OBJECTIVE: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. METHODS: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil-containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. RESULTS: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36-38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator-activated receptor α (Ppara), and peroxisome proliferator-activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. CONCLUSIONS: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial.


Assuntos
Brassicaceae/genética , Dieta , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Sementes/química , Animais , Disponibilidade Biológica , Glicemia/metabolismo , Brassicaceae/química , Dessaturase de Ácido Graxo Delta-5 , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacocinética , Ácidos Graxos Dessaturases/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , PPAR gama/metabolismo , Óleos de Plantas/farmacocinética , Aumento de Peso/efeitos dos fármacos
4.
Mar Drugs ; 13(7): 4255-69, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26184234

RESUMO

The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.


Assuntos
Ácidos Graxos/análise , Óleos de Peixe/farmacologia , Fosfolipídeos/análise , Óleos de Plantas/farmacologia , Salmo salar/metabolismo , Triglicerídeos/análise , Ração Animal , Animais , Ácidos Graxos/química , Fosfolipídeos/química , Triglicerídeos/química
5.
Plant Biotechnol J ; 12(2): 231-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24151938

RESUMO

High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.


Assuntos
Regulação da Expressão Gênica de Plantas , Engenharia Metabólica , Nicotiana/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Expressão Gênica , Fenótipo , Folhas de Planta/metabolismo , Óleos de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Tempo , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes , Triglicerídeos/análise
6.
Plant Biotechnol J ; 11(2): 157-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23066823

RESUMO

This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).


Assuntos
Produtos Agrícolas/química , Engenharia Metabólica , Óleos de Plantas/química , Vias Biossintéticas , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Plantas Geneticamente Modificadas/química , Sementes/química , Biologia Sintética
7.
J Exp Bot ; 63(7): 2397-410, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22291131

RESUMO

Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.


Assuntos
Ácidos Graxos Ômega-3/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vias Biossintéticas , Engenharia Metabólica , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
8.
Plant Physiol Biochem ; 48(2-3): 73-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20044264

RESUMO

The glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.1.15) from sunflower (Helianthus annuus L.) microsomes has been characterised and partially purified. The in vitro determination of activity was optimized, and the maximum value for GPAT activity identified between 15 and 20 days after flowering. The apparent Michaelis-Menten K(m) for the glycerol 3-phosphate was 354 muM. The preferred substrates were palmitoyl-CoA = linoleoyl-CoA > oleoyl-CoA with the lowest activity using stearoyl-CoA. High solubilisation was achieved using 0.75% Tween80 and the solubilised GPAT was partially purified by ion-exchange chromatography using a Hi-Trap DEAE FF column, followed by gel filtration chromatography using a Superose 12 HR column. The fraction containing the GPAT activity was analysed by SDS-PAGE and contained a major band of 60.1 kDa. Finally, evidence is provided which shows the role of GPAT in the asymmetrical distribution, between positions sn-1 and sn-3, of saturated fatty acids in highly saturated sunflower triacylglycerols. This work provides background information on the sunflower endoplasmic reticulum GPAT which may prove valuable for future modification of oil deposition in this important crop.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Helianthus/enzimologia , Óleos de Plantas/metabolismo , Sementes/enzimologia , Triglicerídeos/biossíntese , 1-Acilglicerofosfocolina O-Aciltransferase/isolamento & purificação , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/enzimologia , Ácidos Graxos/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/isolamento & purificação , Glicerofosfatos/metabolismo , Microssomos/enzimologia , Especificidade por Substrato
9.
Plant Biotechnol J ; 7(7): 704-16, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19702757

RESUMO

Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Delta6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae) reflecting the general absence of Delta6-desaturation from higher plants. Using a Delta6-desaturase from Primula vialii, we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialiiDelta6-desaturase specifically only utilises alpha-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 gamma-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source (Echium spp.) or transgenic soybean oil. However, both those latter oils contain gamma-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cromatografia Gasosa , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/fisiologia , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-3/genética , Cromatografia Gasosa-Espectrometria de Massas , Óleo de Semente do Linho/metabolismo , Plantas Geneticamente Modificadas/genética , Triglicerídeos/metabolismo , Ácido alfa-Linolênico/metabolismo
10.
J Agric Food Chem ; 57(4): 1595-9, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19166295

RESUMO

The 1,3-random-2-random theory was proposed several years ago to explain the fatty acid distribution in vegetable oil triacylglycerols. However, by demonstrating an asymmetry between positions sn-1 and sn-3 in olive oil, cocoa butter, sunflower oil, etc., a number of studies have shown that this theory does not hold true for some oils and fatty acids. Accordingly, the distribution of fatty acids in sunflower triacylglycerols has been studied, calculating the alpha coefficient of asymmetry in several combinations of standard linoleic, high-oleic, and high-stearic sunflower oils. The results obtained from the oils of these lines and from single seed oil samples indicate that the asymmetry for saturated fatty acids is greater in high-oleic than in standard linoleic backgrounds. Hence, the distribution of the fatty acids within the triacylglycerol molecule appears to depend not only on the fatty acid under study but also on the other fatty acids in the oil. Thus, it is demonstrated for the first time that certain fatty acids can influence the distribution of other fatty acids within triacylglycerols.


Assuntos
Ácidos Graxos/análise , Óleos de Plantas/química , Triglicerídeos/química , Ácido Linoleico/análise , Ácido Oleico/análise , Ácido Palmítico/análise , Sementes/química , Ácidos Esteáricos/análise , Óleo de Girassol
11.
Anal Biochem ; 317(2): 247-54, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12758264

RESUMO

A method for plant tissue digestion and triacylglycerol (TAG) extraction followed by transmethylation of TAGs to produce the fatty acid methyl esters (FAMEs) from small storage tissue samples is presented. The method allows the analysis of both TAGs and FAMEs from the same sample. Several reagent mixtures and different experimental conditions were tested on sliced sunflower seeds. The best results were obtained using a mixture that was 33.3% a solution of NaCl (0.17 M) in methanol and 66.6% heptane by volume. The TAGs in the heptane solution were transmethylated with a mixture containing methanol:toluene:dimethoxypropane:H(4)SO(2) (39:20:5:2, by vol). The method was also tested on other oil seed storage tissue (soybean) and fruit tissues from olive and acorn. In all cases, sunflower, soybean, olive, and acorn, the TAGs and FAMEs composition data obtained by this method were quite similar to data from a standard analysis method. In samples with high protein content, such as soybean and sunflower seeds, the TAG extraction was incomplete. The water content of fruit samples did not interfere with TAG extraction obtained by this method.


Assuntos
Ácidos Graxos/isolamento & purificação , Óleos de Plantas/química , Sementes/química , Triglicerídeos/isolamento & purificação , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Ácidos Graxos/análise , Frutas/química , Plantas/química , Glycine max/química , Óleo de Girassol , Fatores de Tempo , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA