Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ophthalmology ; 122(9): 1777-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26299721

RESUMO

PURPOSE: To evaluate whether a chromatic pupillometry test can be used to detect impaired function of intrinsically photosensitive retinal ganglion cells (ipRGCs) in patients with primary open-angle glaucoma (POAG) and to determine if pupillary responses correlate with optic nerve damage and visual loss. DESIGN: Cross-sectional study. PARTICIPANTS: One hundred sixty-one healthy controls recruited from a community polyclinic (55 men; 151 ethnic Chinese) and 40 POAG patients recruited from a glaucoma clinic (22 men; 35 ethnic Chinese) 50 years of age or older. METHODS: Subjects underwent monocular exposure to narrowband blue light (469 nm) or red light (631 nm) using a modified Ganzfeld dome. Each light stimulus was increased gradually over 2 minutes to activate sequentially the rods, cones, and ipRGCs that mediate the pupillary light reflex. Pupil diameter was recorded using an infrared pupillography system. MAIN OUTCOME MEASURES: Pupillary responses to blue light and red light were compared between control subjects and those with POAG by constructing dose-response curves across a wide range of corneal irradiances (7-14 log photons/cm(2) per second). In patients with POAG, pupillary responses were evaluated relative to standard automated perimetry testing (Humphrey Visual Field [HVF]; Carl Zeiss Meditec, Dublin, CA) and scanning laser ophthalmoscopy parameters (Heidelberg Retinal Tomography [HRT]; Heidelberg Engineering, Heidelberg, Germany). RESULTS: The pupillary light reflex was reduced in patients with POAG only at higher irradiance levels, corresponding to the range of activation of ipRGCs. Pupillary responses to high-irradiance blue light associated more strongly with disease severity compared with responses to red light, with a significant linear correlation observed between pupil diameter and HVF mean deviation (r = -0.44; P = 0.005) as well as HRT linear cup-to-disc ratio (r = 0.61; P < 0.001) and several other optic nerve head parameters. CONCLUSIONS: In glaucomatous eyes, reduced pupillary responses to high-irradiance blue light were associated with greater visual field loss and optic disc cupping. In POAG, a short chromatic pupillometry test that evaluates the function of ipRGCs can be used to estimate the degree of damage to retinal ganglion cells that mediate image-forming vision. This approach could prove useful in detecting glaucoma.


Assuntos
Glaucoma de Ângulo Aberto/diagnóstico , Luz , Doenças do Nervo Óptico/diagnóstico , Distúrbios Pupilares/diagnóstico , Reflexo Pupilar/efeitos da radiação , Células Ganglionares da Retina/patologia , Transtornos da Visão/diagnóstico , Idoso , Povo Asiático , Estudos Transversais , Feminino , Glaucoma de Ângulo Aberto/classificação , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Oftalmoscopia , Tonometria Ocular , Acuidade Visual/fisiologia , Testes de Campo Visual , Campos Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA