Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Integr Neurosci ; 12: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405366

RESUMO

Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes. While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain. This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE). Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics. The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.

2.
Planta Med ; 84(4): 225-233, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29161743

RESUMO

An advanced Mendelian Cannabis breeding program has been developed utilizing chemical markers to maximize the yield of phytocannabinoids and terpenoids with the aim to improve therapeutic efficacy and safety. Cannabis is often divided into several categories based on cannabinoid content. Type I, Δ9-tetrahydrocannabinol-predominant, is the prevalent offering in both medical and recreational marketplaces. In recent years, the therapeutic benefits of cannabidiol have been better recognized, leading to the promotion of additional chemovars: Type II, Cannabis that contains both Δ9-tetrahydrocannabinol and cannabidiol, and cannabidiol-predominant Type III Cannabis. While high-Δ9-tetrahydrocannabinol and high-myrcene chemovars dominate markets, these may not be optimal for patients who require distinct chemical profiles to achieve symptomatic relief. Type II Cannabis chemovars that display cannabidiol- and terpenoid-rich profiles have the potential to improve both efficacy and minimize adverse events associated with Δ9-tetrahydrocannabinol exposure. Cannabis samples were analyzed for cannabinoid and terpenoid content, and analytical results are presented via PhytoFacts, a patent-pending method of graphically displaying phytocannabinoid and terpenoid content, as well as scent, taste, and subjective therapeutic effect data. Examples from the breeding program are highlighted and include Type I, II, and III Cannabis chemovars, those highly potent in terpenoids in general, or single components, for example, limonene, pinene, terpinolene, and linalool. Additionally, it is demonstrated how Type I - III chemovars have been developed with conserved terpenoid proportions. Specific chemovars may produce enhanced analgesia, anti-inflammatory, anticonvulsant, antidepressant, and anti-anxiety effects, while simultaneously reducing sequelae of Δ9-tetrahydrocannabinol such as panic, toxic psychosis, and short-term memory impairment.


Assuntos
Canabinoides/biossíntese , Cannabis/metabolismo , Biomarcadores/metabolismo , Canabidiol/metabolismo , Canabinoides/farmacologia , Cannabis/genética , Dronabinol/análogos & derivados , Dronabinol/metabolismo , Melhoramento Vegetal
3.
Cannabis Cannabinoid Res ; 2(1): 210-216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082318

RESUMO

Introduction: The roots of the cannabis plant have a long history of medical use stretching back millennia. However, the therapeutic potential of cannabis roots has been largely ignored in modern times. Discussion: In the first century, Pliny the Elder described in Natural Histories that a decoction of the root in water could be used to relieve stiffness in the joints, gout, and related conditions. By the 17th century, various herbalists were recommending cannabis root to treat inflammation, joint pain, gout, and other conditions. There has been a subsequent paucity of research in this area, with only a few studies examining the composition of cannabis root and its medical potential. Active compounds identified and measured in cannabis roots include triterpenoids, friedelin (12.8 mg/kg) and epifriedelanol (21.3 mg/kg); alkaloids, cannabisativine (2.5 mg/kg) and anhydrocannabisativine (0.3 mg/kg); carvone and dihydrocarvone; N-(p-hydroxy-ß-phenylethyl)-p-hydroxy-trans-cinnamamide (1.6 mg/kg); various sterols such as sitosterol (1.5%), campesterol (0.78%), and stigmasterol (0.56%); and other minor compounds, including choline. Of note, cannabis roots are not a significant source of Δ9-tetrahydrocannabinol (THC), cannabidiol, or other known phytocannabinoids. Conclusion: The current available data on the pharmacology of cannabis root components provide significant support to the historical and ethnobotanical claims of clinical efficacy. Certainly, this suggests the need for reexamination of whole root preparations on inflammatory and malignant conditions employing modern scientific techniques.

4.
Adv Pharmacol ; 80: 67-134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28826544

RESUMO

The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam's professed "pharmacological treasure trove."


Assuntos
Canabinoides/farmacologia , Cannabis/química , Animais , Canabinoides/química , Humanos , Isomerismo , Especificidade de Órgãos , Sesquiterpenos/química , Sesquiterpenos/farmacologia
5.
Epilepsy Behav ; 70(Pt B): 292-297, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989385

RESUMO

Cannabis has been associated with the treatment of epilepsy throughout history, and if ancient Assyrian sources referring to "hand of ghost" are considered credible, this relationship may span four millennia. A tradition of usage continued in Arabic medicine and Ayurvedic practice in India, which led, in turn, to early experiments in Europe and North America with "Indian hemp." Lack of standardization, bioavailability issues, and ultimately prohibition were all factors in cannabis-based medicines failing to maintain mainstream usage in seizure treatment, but investigation was resumed in the 1970s with interesting signals noted in both laboratory and clinical settings. Early case studies showed promise, but lacked sufficient rigor. Resumption of research coupled with mass experimentation by families of epilepsy patients has led to intense interest in cannabis-based medicines for its treatment once more, with greatest focus on cannabidiol, but additional investigation of tetrahydrocannabinol, tetrahydrocannabinolic acid, and other phytocannabinoids. This article is part of a Special Issue entitled "Cannabinoids and Epilepsy".


Assuntos
Canabinoides/uso terapêutico , Cannabis , Epilepsia/tratamento farmacológico , Epilepsia/epidemiologia , Maconha Medicinal/uso terapêutico , Canabidiol/uso terapêutico , Dronabinol/uso terapêutico , Combinação de Medicamentos , Europa (Continente)/epidemiologia , História Antiga , Humanos , Índia/epidemiologia , América do Norte/epidemiologia , Convulsões/tratamento farmacológico , Convulsões/epidemiologia
6.
Front Pharmacol ; 7: 309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683558

RESUMO

This overview covers a wide range of cannabis topics, initially examining issues in dispensaries and self-administration, plus regulatory requirements for production of cannabis-based medicines, particularly the Food and Drug Administration "Botanical Guidance." The remainder pertains to various cannabis controversies that certainly require closer examination if the scientific, consumer, and governmental stakeholders are ever to reach consensus on safety issues, specifically: whether botanical cannabis displays herbal synergy of its components, pharmacokinetics of cannabis and dose titration, whether cannabis medicines produce cyclo-oxygenase inhibition, cannabis-drug interactions, and cytochrome P450 issues, whether cannabis randomized clinical trials are properly blinded, combatting the placebo effect in those trials via new approaches, the drug abuse liability (DAL) of cannabis-based medicines and their regulatory scheduling, their effects on cognitive function and psychiatric sequelae, immunological effects, cannabis and driving safety, youth usage, issues related to cannabis smoking and vaporization, cannabis concentrates and vape-pens, and laboratory analysis for contamination with bacteria and heavy metals. Finally, the issue of pesticide usage on cannabis crops is addressed. New and disturbing data on pesticide residues in legal cannabis products in Washington State are presented with the observation of an 84.6% contamination rate including potentially neurotoxic and carcinogenic agents. With ongoing developments in legalization of cannabis in medical and recreational settings, numerous scientific, safety, and public health issues remain.

7.
Trends Pharmacol Sci ; 37(7): 594-605, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27179600

RESUMO

Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review.


Assuntos
Cannabis , Endocanabinoides/fisiologia , Plantas Medicinais , Amidoidrolases/antagonistas & inibidores , Canabinoides/farmacologia , Cannabis/química , Humanos , Fitoterapia , Plantas Medicinais/química , Sesquiterpenos Policíclicos , Probióticos/farmacologia , Sesquiterpenos/farmacologia , Canais de Cátion TRPV/agonistas
8.
Cannabis Cannabinoid Res ; 1(1): 44-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28861479

RESUMO

Dr. Ethan Russo, MD, is a board-certified neurologist, psychopharmacology researcher, and Medical Director of PHYTECS, a biotechnology company researching and developing innovative approaches targeting the human endocannabinoid system. Previously, from 2003 to 2014, he served as Senior Medical Advisor and study physician to GW Pharmaceuticals for three Phase III clinical trials of Sativex® for alleviation of cancer pain unresponsive to optimized opioid treatment and studies of Epidiolex® for intractable epilepsy. He has held faculty appointments in Pharmaceutical Sciences at the University of Montana, in Medicine at the University of Washington, and as visiting Professor, Chinese Academy of Sciences. He is a past President of the International Cannabinoid Research Society and former Chairman of the International Association for Cannabinoid Medicines. He serves on the Scientific Advisory Board for the American Botanical Council. He is the author of numerous books, book chapters, and articles on Cannabis, ethnobotany, and herbal medicine. His research interests have included correlations of historical uses of Cannabis with modern pharmacological mechanisms, phytopharmaceutical treatment of migraine and chronic pain, and phytocannabinoid/terpenoid/serotonergic/vanilloid interactions.

9.
Br J Pharmacol ; 163(7): 1344-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21749363

RESUMO

Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, ß-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Assuntos
Dronabinol/farmacologia , Terpenos/farmacologia , Animais , Cannabis/química , Sinergismo Farmacológico , Humanos , Fitoterapia
10.
J Exp Bot ; 59(15): 4171-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19036842

RESUMO

The Yanghai Tombs near Turpan, Xinjiang-Uighur Autonomous Region, China have recently been excavated to reveal the 2700-year-old grave of a Caucasoid shaman whose accoutrements included a large cache of cannabis, superbly preserved by climatic and burial conditions. A multidisciplinary international team demonstrated through botanical examination, phytochemical investigation, and genetic deoxyribonucleic acid analysis by polymerase chain reaction that this material contained tetrahydrocannabinol, the psychoactive component of cannabis, its oxidative degradation product, cannabinol, other metabolites, and its synthetic enzyme, tetrahydrocannabinolic acid synthase, as well as a novel genetic variant with two single nucleotide polymorphisms. The cannabis was presumably employed by this culture as a medicinal or psychoactive agent, or an aid to divination. To our knowledge, these investigations provide the oldest documentation of cannabis as a pharmacologically active agent, and contribute to the medical and archaeological record of this pre-Silk Road culture.


Assuntos
Cannabis/química , Cannabis/genética , Sequência de Aminoácidos , Sequência de Bases , Canabidiol/análise , China , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Plantas/genética
11.
Neuro Endocrinol Lett ; 29(2): 192-200, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18404144

RESUMO

OBJECTIVES: This study examines the concept of clinical endocannabinoid deficiency (CECD), and the prospect that it could underlie the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome, and other functional conditions alleviated by clinical cannabis. METHODS: Available literature was reviewed, and literature searches pursued via the National Library of Medicine database and other resources. RESULTS: Migraine has numerous relationships to endocannabinoid function. Anandamide (AEA) potentiates 5-HT1A and inhibits 5-HT2A receptors supporting therapeutic efficacy in acute and preventive migraine treatment. Cannabinoids also demonstrate dopamine-blocking and anti-inflammatory effects. AEA is tonically active in the periaqueductal gray matter, a migraine generator. THC modulates glutamatergic neurotransmission via NMDA receptors. Fibromyalgia is now conceived as a central sensitization state with secondary hyperalgesia. Cannabinoids have similarly demonstrated the ability to block spinal, peripheral and gastrointestinal mechanisms that promote pain in headache, fibromyalgia, IBS and related disorders. The past and potential clinical utility of cannabis-based medicines in their treatment is discussed, as are further suggestions for experimental investigation of CECD via CSF examination and neuro-imaging. CONCLUSION: Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.

12.
Chem Biodivers ; 4(8): 1614-48, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17712811

RESUMO

Cannabis sativa L. is possibly one of the oldest plants cultivated by man, but has remained a source of controversy throughout its history. Whether pariah or panacea, this most versatile botanical has provided a mirror to medicine and has pointed the way in the last two decades toward a host of medical challenges from analgesia to weight loss through the discovery of its myriad biochemical attributes and the endocannabinoid system wherein many of its components operate. This study surveys the history of cannabis, its genetics and preparations. A review of cannabis usage in Ancient Egypt will serve as an archetype, while examining first mentions from various Old World cultures and their pertinence for contemporary scientific investigation. Cannabis historians of the past have provided promising clues to potential treatments for a wide array of currently puzzling medical syndromes including chronic pain, spasticity, cancer, seizure disorders, nausea, anorexia, and infectious disease that remain challenges for 21st century medicine. Information gleaned from the history of cannabis administration in its various forms may provide useful points of departure for research into novel delivery techniques and standardization of cannabis-based medicines that will allow their prescription for treatment of these intractable medical conditions.


Assuntos
Cannabis , Preparações Farmacêuticas/história , Plantas Medicinais , Cannabis/química , Cannabis/genética , Cannabis/metabolismo , China , Egito , História do Século XX , História do Século XXI , História Antiga , Índia , Oriente Médio , Preparações Farmacêuticas/química , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
13.
Chem Biodivers ; 4(8): 1729-43, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17712817

RESUMO

Cannabis sativa L. has been utilized for treatment of pain and sleep disorders since ancient times. This review examines modern studies on effects of Delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on sleep. It goes on to report new information on the effects on sleep in the context of medical treatment of neuropathic pain and symptoms of multiple sclerosis, employing standardized oromucosal cannabis-based medicines containing primarily THC, CBD, or a 1 : 1 combination of the two (Sativex). Sleep-laboratory results indicate a mild activating effect of CBD, and slight residual sedation with THC-predominant extracts. Experience to date with Sativex in numerous Phase I-III studies in 2000 subjects with 1000 patient years of exposure demonstrate marked improvement in subjective sleep parameters in patients with a wide variety of pain conditions including multiple sclerosis, peripheral neuropathic pain, intractable cancer pain, and rheumatoid arthritis, with an acceptable adverse event profile. No tolerance to the benefit of Sativex on pain or sleep, nor need for dosage increases have been noted in safety extension studies of up to four years, wherein 40-50% of subjects attained good or very good sleep quality, a key source of disability in chronic pain syndromes that may contribute to patients' quality of life.


Assuntos
Cannabis/química , Dor/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Transtornos do Sono-Vigília/tratamento farmacológico , Sono/efeitos dos fármacos , Canabidiol , Ensaios Clínicos como Assunto , Dronabinol/uso terapêutico , Combinação de Medicamentos , Humanos , Preparações de Plantas/uso terapêutico
14.
Neuro Endocrinol Lett ; 25(1-2): 31-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15159679

RESUMO

OBJECTIVES: This study examines the concept of clinical endocannabinoid deficiency (CECD), and the prospect that it could underlie the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome, and other functional conditions alleviated by clinical cannabis. METHODS: Available literature was reviewed, and literature searches pursued via the National Library of Medicine database and other resources. RESULTS: Migraine has numerous relationships to endocannabinoid function. Anandamide (AEA) potentiates 5-HT1A and inhibits 5-HT2A receptors supporting therapeutic efficacy in acute and preventive migraine treatment. Cannabinoids also demonstrate dopamine-blocking and anti-inflammatory effects. AEA is tonically active in the periaqueductal gray matter, a migraine generator. THC modulates glutamatergic neurotransmission via NMDA receptors. Fibromyalgia is now conceived as a central sensitization state with secondary hyperalgesia. Cannabinoids have similarly demonstrated the ability to block spinal, peripheral and gastrointestinal mechanisms that promote pain in headache, fibromyalgia, IBS and related disorders. The past and potential clinical utility of cannabis-based medicines in their treatment is discussed, as are further suggestions for experimental investigation of CECD via CSF examination and neuro-imaging. CONCLUSION: Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.


Assuntos
Moduladores de Receptores de Canabinoides/deficiência , Endocanabinoides , Fibromialgia/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Dor/fisiopatologia , Ácidos Araquidônicos/farmacologia , Canabinoides/uso terapêutico , Fibromialgia/tratamento farmacológico , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Transtornos de Enxaqueca/tratamento farmacológico , Dor/tratamento farmacológico , Alcamidas Poli-Insaturadas , Serotonina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA