Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458762

RESUMO

Cannabidiolic acid (CBDA) is the main precannabinoid in industrial hemp. It represents a common constituent of hemp seed oil, but mainly abundant in the aerial parts of the plant (including their processing waste). Thus, the optimization of fast and low-cost purification strategies is mandatory, as well as a deep investigation on its nutraceutical and cosmeceutical properties. To this purpose, CBDA content in hemp seed oil is evaluated, and its recovery from wasted leaves is favorably achieved. The cytotoxicity screening towards HaCaT cells, by means of MTT, SRB and LDH release assays, suggested it was not able to decrease cell viability or perturb cell integrity up to 10 µM concentration. Thus, the ability of CBDA to differentially modulate the release of proinflammatory cytokines and chemokines mediators has been evaluated, finding that CBDA decreased IFN-γ, CXCL8, CXCL10, CCL2, CCL4 and CCL5, mostly in a dose-dependent manner, with 10 µM tested concentration exerting the highest activity. These data, together with those from assessing antimicrobial activity against Gram(+) and Gram(-) bacteria and the antibiofilm formation, suggest that CBDA is able to counteract the inflammatory response, also preventing bacteria colonization.


Assuntos
Canabinoides , Cannabis , Canabinoides/farmacologia , Extratos Vegetais
2.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362429

RESUMO

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Urtica dioica/química , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Relação Estrutura-Atividade
3.
Molecules ; 24(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058835

RESUMO

In several European countries, especially in Sweden, the seeds of the species Astragalus boeticus L. were widely used as coffee substitutes during the 19th century. Nonetheless, data regarding the phytochemistry and the pharmacological properties of this species are currently extremely limited. Conversely, other species belonging to the Astragalus genus have already been extensively investigated, as they were used for millennia for treating various diseases, including cancer. The current work was addressed to characterize cycloartane glycosides from A. boeticus, and to evaluate their cytotoxicity towards human colorectal cancer (CRC) cell lines. The isolation of the metabolites was performed by using different chromatographic techniques, while their chemical structures were elucidated by nuclear magnetic resonance (NMR) (1D and 2D techniques) and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The cytotoxic assessment was performed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in Caco-2, HT-29 and HCT-116 CRC cells. As a result, the targeted phytochemical study of A. boeticus enabled the isolation of three new cycloartane glycosides, 6-O-acetyl-3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (1), 3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (2), 6-O-acetyl-25-O-ß-d-glucopyranosyl-3-O-ß-d-xylopyranosylcycloastragenol (3) along with two known compounds, 6-O-acetyl-3-O-ß-d-xylopyranosylcycloastragenol (4) and 3-O-ß-d-xylopyranosylcycloastragenol (5). Importantly, this work demonstrated that the acetylated cycloartane glycosides 1 and 4 might preferentially inhibit cell growth in the CRC cell model resistant to epidermal growth factor receptor (EGFR) inhibitors.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astrágalo/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicosídeos/farmacologia , Triterpenos/química , Acilação , Antineoplásicos Fitogênicos/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicosídeos/química , Células HCT116 , Células HT29 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray , Suécia
4.
Mol Biotechnol ; 61(3): 209-220, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661170

RESUMO

Ageing is a complex and progressive phenomenon, during which the accumulation of morphological and chemical changes seriously compromises the capacity of the cells to proliferate and fulfil their biological tasks. The increase in the average age of the world population, associated with a higher occurrence of age-related diseases, is prompting scientific research to look for new strategies and molecular targets that may help in alleviating age-related phenotypes. Growth factors, responsible for modulating several aging markers in many tissues and organs, represent valuable targets to fight age-associated dysfunctions. The growth differentiation factor GDF11, a TGF-ß family member, has been associated with the maintenance of youth phenotypes in different human tissues and organs, and in the skin has been related to an inhibition of the inflammatory response. We investigated the role of GDF11 in skin dermal fibroblasts, and we observed that its expression and activity were reduced in fibroblasts deriving from adult donors compared to neonatal ones. The main effect of GDF11 was the induction of collagen I and III, in both neonatal and adult fibroblasts, by triggering Smad signalling in a TGF-ß-like fashion. Moreover, by analysing a number of plant extracts having GDF11 inducing activity, we found that a peptide/sugar preparation, obtained from Lotus japonicus somatic embryo cultures, was capable of restoring GDF11 expression in older fibroblasts and to activate the synthesis of collagen I, collagen III and periostin, an important protein involved in collagen assembly.


Assuntos
Envelhecimento/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Lotus/química , Extratos Vegetais/farmacologia , Pele/metabolismo , Adulto , Envelhecimento/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/citologia , Pele/efeitos dos fármacos , Proteínas Smad/metabolismo , Açúcares/farmacologia
5.
Sci Rep ; 8(1): 5309, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593231

RESUMO

The discovery of bioactive compounds from natural sources entails an extremely lengthy process due to the timescale and complexity of traditional methodologies. In our study, we used a rapid NMR based metabolomic approach as tool to identify secondary metabolites with anti-proliferative activity against a panel of human colorectal cancer cell lines with different mutation profiles. For this purpose, fourteen Fabaceae species of Mediterranean vegetation were investigated using a double screening method: 1H NMR profiling enabled the identification of the main compounds present in the mixtures, whilst parallel biological assays allowed the selection of two plant extracts based on their strong anti-proliferative properties. Using high-resolution 2D NMR spectroscopy, putative active constituents were identified in the mixture and isolated by performing a bio-guided fractionation of the selected plant extracts. As a result, we found two active principles: a cycloartane glycoside and protodioscin derivative. Interestingly, these metabolites displayed a preferential anti-proliferative effect on colon cancer cell lines with an intrinsic resistance to anti-EGFR therapies. Our work provides an NMR-based metabolomic approach as a powerful and efficient tool to discover natural products with anticancer activities circumventing time-consuming procedures.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/metabolismo , Metabolômica/métodos , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fracionamento Químico/métodos , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Fabaceae/metabolismo , Glicosídeos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia
6.
Exp Cell Res ; 364(1): 50-58, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29366810

RESUMO

Angiogenesis is a process encompassing several steps such as endothelial cells proliferation, differentiation and migration to form a vascular network, involving different signal transduction pathways. Among these, ERK1/2 signaling mediates VEGF-dependent signaling pathway. Here we report that the water extract of Ruta graveolens (RGWE), widely known as a medicinal plant, is able to impair in a dose-dependent manner, cell network formation without affecting cell viability. Biochemical analysis showed that the major component of RGWE is rutin, unable to reproduce RGWE effect. We found that RGWE inhibits ERK1/2 phosphorylation and that this event is crucial in cell network formation since the transfection of HUVEC with a constitutively active MEK (caMEK), the ERK1/2 activator, induces a robust cell network formation as compared to untransfected and/or mock transfected cells and, more importantly, caMEK transfected cells became unresponsive to RGWE. Moreover, RGWE inhibits VEGF and nestin gene expression, necessary for vessel formation, and the caMEK transfection induces their higher expression. In conclusion, we report that RGWE is able to significantly impair vessels network formation without affecting cell viability, preventing ERK1/2 activation and, in turn, down-regulating VEGF and nestin expression. These findings point to RGWE as a potential therapeutic tool capable to interfere with pathologic angiogenesis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ruta/química , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , MAP Quinase Quinase 1/genética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA