Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Biotechnol ; 81: 57-68, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531507

RESUMO

Novacetimonas hansenii SI1, previously known as Komagataeibacter hansenii, produces bacterial nanocellulose (BNC) with unique ability to stretch. The addition of vitamin C in the culture medium increases the porosity of the membranes and their stretchability making them highly moldable. To better understand the genetic background of this strain, we obtained its complete genome sequence using a hybrid sequencing and assembly strategy. We described the functional regions in the genome which are important for the synthesis of BNC and acetan-like II polymer. We next investigated the effect of 1% vitamin C supplementation on the global gene expression profile using RNA sequencing. Our transcriptomic readouts imply that vitamin C functions mainly as a reducing agent. We found that the changes in cellular redox status are balanced by strong repression of the sulfur assimilation pathway. Moreover, in the reduced conditions, glucose oxidation is decreased and alternative pathways for energy generation, such as acetate accumulation, are activated. The presence of vitamin C negatively influences acetan-like II polymer biosynthesis, which may explain the lowered yield and changed mechanical properties of BNC. The results of this study enrich the functional characteristics of the genomes of the efficient producers of the N. hansenii species. Improved understanding of the adaptation to the presence of vitamin C at the molecular level has important guiding significance for influencing the biosynthesis of BNC and its morphology.


Assuntos
Acetobacteraceae , Celulose , Transcriptoma , Celulose/metabolismo , Ácido Ascórbico , Suplementos Nutricionais
2.
Polymers (Basel) ; 13(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34961006

RESUMO

A new strain of bacteria producing cellulose was isolated from Kombucha and identified as Komagataeibacter hansenii, named SI1. In static conditions, the strain synthesises bacterial nanocellulose with an improved ability to stretch. In this study, utilisation of various carbon and nitrogen sources and the impact of initial pH was assessed in terms of bacterial nanocellulose yield and properties. K. hansenii SI1 produces cellulose efficiently in glycerol medium at pH 5.0-6.0 with a yield of 3.20-3.60 g/L. Glucose medium led to the synthesis of membrane characterised by a strain of 77%, which is a higher value than in the case of another Komagataeibacter species. Supplementation of medium with vitamin C results in an enhanced porosity and improves the ability of bacterial nanocellulose to stretch (up to 123%). The properties of modified membranes were studied by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and mechanical tests. The results show that bacterial nanocellulose produced in SH medium and vitamin C-supplemented medium has unique properties (porosity, tensile strength and strain) without changing the chemical composition of cellulose. The method of production BNC with altered properties was the issue of Polish patent application no. P.431265.

3.
Int J Biol Macromol ; 187: 584-593, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34324907

RESUMO

This study aims to examine the effect of ethanol and lactic acid on the production of bacterial cellulose, and determine the optimal composition of a co-supplemented culture using response surface methodology. Both ethanol and lactic acid, when added separately or jointly, affected the yield and properties of the biomaterial. Optimization resulted in an increase of 470% in the yield, compared to the Schramm-Hestrin medium. Culture growth profiles, substrate consumption and by-products generation, were examined. The growth rate was increased for cultures supplemented with lactic acid and both lactic acid and ethanol, while the production of gluconic acid was diminished for all modified cultures. The properties of BNC, such as the structure, crystallinity, water holding capacity and tensile strength, were also determined. BNC produced in optimal conditions is more porous and characterized by wider fibers. Despite a decrease in crystallinity, by the addition of ethanol, lactic acid and both additives, the ratio of cellulose Iα was almost unchanged. The stress, strain, young modulus and toughness were improved 2.8-4.2 times, 1-1.9 times, 2.4-3.5 times and 2.5-6.8 times, respectively. The new approach to improving BNC yields and properties presented here could contribute to more economical production and wider application of this biopolymer.


Assuntos
Celulose/biossíntese , Etanol/farmacologia , Gluconacetobacter xylinus/efeitos dos fármacos , Ácido Láctico/farmacologia , Ácido Acético/metabolismo , Celulose/química , Cristalização , Módulo de Elasticidade , Gluconacetobacter xylinus/crescimento & desenvolvimento , Gluconacetobacter xylinus/metabolismo , Gluconatos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Resistência à Tração , Água/química
4.
Appl Microbiol Biotechnol ; 103(16): 6673-6688, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168651

RESUMO

Ethanol exerts a strong positive effect on the cellulose yields from the widely exploited microbial producers of the Komagataeibacter genus. Ethanol is postulated to provide an alternative energy source, enabling effective use of glucose for cellulose biosynthesis rather than for energy acquisition. In this paper, we investigate the effect of ethanol supplementation on the global gene expression profile of Komagataeibacter xylinus E25 using RNA sequencing technology (RNA-seq). We demonstrate that when ethanol is present in the culture medium, glucose metabolism is directed towards cellulose production due to the induction of genes related to UDP-glucose formation and the repression of genes involved in glycolysis and acetan biosynthesis. Transcriptional changes in the pathways of cellulose biosynthesis and c-di-GMP metabolism are also described. The transcript level profiles suggest that Schramm-Hestrin medium supplemented with ethanol promotes bacterial growth by inducing protein biosynthesis and iron uptake. We observed downregulation of genes encoding transposases of the IS110 family which may provide one line of evidence explaining the positive effect of ethanol supplementation on the genotypic stability of K. xylinus E25. The results of this study increase knowledge and understanding of the regulatory effects imposed by ethanol on cellulose biosynthesis, providing new opportunities for directed strain improvement, scaled-up bionanocellulose production, and wider industrial exploitation of the Komagataeibacter species as bacterial cellulose producers.


Assuntos
Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/metabolismo , Celulose/biossíntese , Etanol/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Redes e Vias Metabólicas/genética
5.
Nat Genet ; 46(9): 1034-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064008

RESUMO

Solanum pennellii is a wild tomato species endemic to Andean regions in South America, where it has evolved to thrive in arid habitats. Because of its extreme stress tolerance and unusual morphology, it is an important donor of germplasm for the cultivated tomato Solanum lycopersicum. Introgression lines (ILs) in which large genomic regions of S. lycopersicum are replaced with the corresponding segments from S. pennellii can show remarkably superior agronomic performance. Here we describe a high-quality genome assembly of the parents of the IL population. By anchoring the S. pennellii genome to the genetic map, we define candidate genes for stress tolerance and provide evidence that transposable elements had a role in the evolution of these traits. Our work paves a path toward further tomato improvement and for deciphering the mechanisms underlying the myriad other agronomic traits that can be improved with S. pennellii germplasm.


Assuntos
Genoma de Planta , Solanum/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Elementos de DNA Transponíveis , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA