Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(2): 220-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465220

RESUMO

Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232949

RESUMO

High temperature is one of the most significant abiotic stresses reducing crop yield and quality by inhibiting plant growth and development. Global warming has recently increased the frequency of heat waves, which negatively impacts agricultural fields. Despite numerous studies on heat stress responses and signal transduction in model plant species, the molecular mechanism underlying thermomorphogenesis in Panax ginseng remains largely unknown. Here, we investigated the high temperature response of ginseng at the phenotypic and molecular levels. Both the primary shoot growth and secondary root growth of ginseng plants were significantly reduced at high temperature. Histological analysis revealed that these decreases in shoot and root growth were caused by decreases in cell elongation and cambium stem cell activity, respectively. Analysis of P. ginseng RNA-seq data revealed that heat-stress-repressed stem and root growth is closely related to changes in photosynthesis, cell wall organization, cell wall loosening, and abscisic acid (ABA) and jasmonic acid (JA) signaling. Reduction in both the light and dark reactions of photosynthesis resulted in defects in starch granule development in the storage parenchymal cells of the main tap root. Thus, by combining bioinformatics and histological analyses, we show that high temperature signaling pathways are integrated with crucial biological processes that repress stem and root growth in ginseng, providing novel insight into the heat stress response mechanism of P. ginseng.


Assuntos
Panax , Ácido Abscísico/metabolismo , Panax/metabolismo , Fotossíntese/fisiologia , Raízes de Plantas/metabolismo , Amido/metabolismo , Temperatura
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445398

RESUMO

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


Assuntos
Perfilação da Expressão Gênica/métodos , Giberelinas/farmacologia , Panax/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação com Perda de Função , Panax/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Domínios Proteicos , Receptores de Superfície Celular/química , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
4.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352948

RESUMO

Brassinosteroids (BRs) play crucial roles in the physiology and development of plants. In the model plant Arabidopsis, BR signaling is initiated at the level of membrane receptors, BRASSINOSTEROIDS INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) complex, thus activating the transcription factors (TFs) BRASSINAZOLE RESISTANT 1/BRI1-EMS-SUPPRESSOR 1 (BZR1/BES1) to coordinate BR responsive genes. BRASSINOSTEROIDS INSENSITIVE 2 (BIN2), glycogen synthase kinase 3 (GSK3) like-kinase, negatively regulates BZR1/BES1 transcriptional activity through phosphorylation-dependent cytosolic retention and shuttling. However, it is still unknown whether this mechanism is conserved in Panax ginseng C. A. Mayer, a member of the Araliaceae family, which is a shade-tolerant perennial root crop. Despite its pharmacological and agricultural importance, the role of BR signaling in the development of P. ginseng and characterization of BR signaling components are still elusive. In this study, by utilizing the Arabidopsisbri1 mutant, we found that ectopic expression of the gain of function form of PgBZR1 (Pgbzr1-1D) restores BR deficiency. In detail, ectopic expression of Pgbzr1-1D rescues dwarfism, defects of floral organ development, and hypocotyl elongation of bri1-5, implying the functional conservation of PgBZR1 in P. ginseng. Interestingly, brassinolide (BL) and BRs biosynthesis inhibitor treatment in two-year-old P. ginseng storage root interferes with and promotes, respectively, secondary growth in terms of xylem formation. Altogether, our results provide new insight into the functional conservation and potential diversification of BR signaling and response in P. ginseng.


Assuntos
Brassinosteroides/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Panax/efeitos dos fármacos , Panax/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/química , Resistência a Medicamentos , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Mutação , Panax/classificação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
5.
PeerJ ; 7: e7479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410317

RESUMO

BACKGROUND: Licorice (Glycyrrhiza spp. L.) is used as a natural sweetener and medicinal herb in European and Asian countries. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated species. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species. METHODS: In the present study, we developed polymorphic SSR markers based on whole-genomesequence data of Glycyrrhiza lepidota. Then, based on the sequence information, the polymorphic SSR markers were developed. The SSR markers were applied to 23 Glycyrrhiza individual plants. We also evaluated the phylogenetic relationships and interspecies transferability among samples. RESULTS: The genetic diversity analysis using these markers identified 2-23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11-0.91, 0-0.90, 0.17-0.94, and 0.15-0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for G. echinata, G. glabra, and G. uralensis, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The reported markers represent a valuable resource for the genetic characteri z ation of Glycyrrhiza spp. for theanalysis of its genetic variability, and as a tool for licorice transferability. This is the first intraspecific study in a collection of Glycyrrhiza spp. germplasm using SSR markers.

6.
Genes (Basel) ; 8(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914759

RESUMO

Korean ginseng (Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng, we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana. Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng. In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.

7.
Nature ; 455(7216): 1134-7, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18948957

RESUMO

Flowering plants possess a unique reproductive strategy, involving double fertilization by twin sperm cells. Unlike animal germ lines, the male germ cell lineage in plants only forms after meiosis and involves asymmetric division of haploid microspores, to produce a large, non-germline vegetative cell and a germ cell that undergoes one further division to produce the twin sperm cells. Although this switch in cell cycle control is critical for sperm cell production and delivery, the underlying molecular mechanisms are unknown. Here we identify a novel F-box protein of Arabidopsis thaliana, designated FBL17 (F-box-like 17), that enables this switch by targeting the degradation of cyclin-dependent kinase A;1 inhibitors specifically in male germ cells. We show that FBL17 is transiently expressed in the male germ line after asymmetric division and forms an SKP1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex (SCF(FBL17)) that targets the cyclin-dependent kinase inhibitors KRP6 and KRP7 for proteasome-dependent degradation. Accordingly, the loss of FBL17 function leads to the stabilization of KRP6 and inhibition of germ cell cycle progression. Our results identify SCF(FBL17) as an essential male germ cell proliferation complex that promotes twin sperm cell production and double fertilization in flowering plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas F-Box/metabolismo , Pólen/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Proliferação de Células , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA