Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904105

RESUMO

Lettuce (Lactuca sativa L.) contains various bioactive compounds that can reduce the severity of inflammatory diseases. This study aimed to identify therapeutic effects and underlying mechanisms of fermented lettuce extract (FLE) containing stable nitric oxide (NO) on collagen-induced arthritis (CIA) in mice and fibroblast-like synoviocytes (MH7A line) from patients with rheumatoid arthritis (RA). DBA/1 mice were immunized with bovine type II collagen and orally administered FLE for 14 days. On day 36, mouse sera and ankle joints were collected for serological and histological analysis, respectively. Consuming FLE inhibited RA development, suppressing pro-inflammatory cytokine productions, synovial inflammation, and cartilage degradation. The therapeutic effects of FLE in CIA mice were similar to those of methotrexate (MTX), which is typically used to treat RA. In vitro, FLE suppressed the transforming growth factor-ß (TGF-ß)/Smad signaling pathway in MH7A cells. We also demonstrated that FLE inhibited TGF-ß-induced cell migration, suppressed MMP-2/9 expression, inhibited MH7A cell proliferation, and increased the expression of autophagy markers LC3B and p62 in a dose-dependent manner. Our data suggest that FLE could induce autophagosome formations in the early of stages of autophagy while inhibiting their degradation in the later stages. In conclusion, FLE is a potential therapeutic agent for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Extratos Vegetais , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos , Lactuca , Camundongos Endogâmicos DBA , Óxido Nítrico/metabolismo , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Crescimento Transformador beta/metabolismo , Extratos Vegetais/farmacologia
3.
Cancers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634506

RESUMO

Depression is more common in women with breast cancer than the general population. Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are widely used for the treatment of patients with depression and a range of anxiety-related disorders. The association between the use of antidepressant medication and breast cancer is controversial. In this study, we investigated whether and how SSRIs induce the death of human breast cancer MCF-7 cells. Of the antidepressants tested in this study (amitriptyline, bupropion, fluoxetine, paroxetine, and tianeptine), paroxetine most reduced the viability of MCF-7 cells in a time-and dose-dependent manner. The exposure of MCF-7 cells to paroxetine resulted in mitochondrion-mediated apoptosis, which is assessed by increase in the number of cells with sub-G1 DNA content, caspase-8/9 activation, poly (ADP-ribose) polymerase cleavage, and Bax/Bcl-2 ratio and a reduction in the mitochondrial membrane potential. Paroxetine increased a generation of reactive oxygen species (ROS), intracellular Ca2+ levels, and p38 MAPK activation. The paroxetine-induced apoptotic events were reduced by ROS scavengers and p38 MAPK inhibitor, and the paroxetine's effect was dependent on extracellular Ca2+ level. Paroxetine also showed a synergistic effect on cell death induced by chemotherapeutic drugs in MCF-7 and MDA-MB-231 cells. Our results showed that paroxetine induced apoptosis of human breast cancer MCF-7 cells through extracellular Ca2+-and p38 MAPK-dependent ROS generation. These results suggest that paroxetine may serve as an anticancer adjuvant to current cancer therapies for breast cancer patients with or without depression.

4.
Molecules ; 22(6)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587168

RESUMO

Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.


Assuntos
Alho/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo
5.
Molecules ; 21(4): 430, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27043510

RESUMO

Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE2, NO, IL-6, IL-1ß, LTD4, and LTE4 production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS.


Assuntos
Anti-Inflamatórios/química , Alho/química , Inflamação/tratamento farmacológico , Extratos Vegetais/química , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/química , Linhagem Celular , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
6.
J Med Food ; 18(4): 439-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584924

RESUMO

Lipopolysaccharides (LPS) activate nuclear factor kappa B (NF-κB), a transcription factor that is involved in inflammatory response. The pathways that activate NF-κB can be modulated by phytochemicals derived from garlic. We recently demonstrated that aged red garlic extract (ARGE), a new formulation of garlic, decreases nitric oxide (NO) generation by upregulating of heme oxygenase-1 (HO-1) in RAW 264.7 cells activated by LPS. However, the effects of ARGE on LPS-induced NF-κB activation are unknown. This study was performed to evaluate whether ARGE regulates LPS-induced NO production by modulation of NF-κB activation in macrophages. The inhibition of NF-κB by Bay 11-7085, an inhibitor of NF-κB, decreased LPS-induced NO production. ARGE treatment markedly reduced LPS-induced NO production and NF-κB nuclear translocation. ARGE downregulated expression of inducible nitric oxide synthase (iNOS) and upregulated expression of HO-1, a cytoprotective and anti-inflammatory protein. However, Bay 11-7085 only reduced iNOS expression. The NO production and iNOS expressions upregulated by suppression of HO-1 were suppressed by treatment with ARGE and Bay 11-7085. These results show that ARGE reduces LPS-induced NO production in macrophages through inhibition of NF-κB nuclear translocation and HO-1 activation. Compared to Bay 11-7085, ARGE may enhance anti-inflammatory effects by controlling other anti-inflammatory signals as well as regulation of NF-κB.


Assuntos
Anti-Inflamatórios/farmacologia , Alho/química , Macrófagos/efeitos dos fármacos , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Extratos Vegetais/farmacologia , Animais , Regulação para Baixo/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Células RAW 264.7
7.
Food Chem Toxicol ; 58: 545-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583806

RESUMO

Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1ß, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.


Assuntos
Citocinas/biossíntese , Regulação para Baixo/efeitos dos fármacos , Alho/química , Temperatura Alta , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Extratos Vegetais/farmacologia , Ácidos Sulfínicos/metabolismo , Animais , Linhagem Celular , Dissulfetos , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA