Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hear Res ; 343: 34-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27421755

RESUMO

Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.


Assuntos
Cóclea/inervação , Surdez/fisiopatologia , Audição , Colículos Inferiores/fisiopatologia , Núcleo Olivar/fisiopatologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Percepção Auditiva , Comportamento Animal , Surdez/metabolismo , Surdez/patologia , Surdez/psicologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Predisposição Genética para Doença , Audição/genética , Colículos Inferiores/metabolismo , Colículos Inferiores/ultraestrutura , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Técnicas de Rastreamento Neuroanatômico , Núcleo Olivar/metabolismo , Núcleo Olivar/ultraestrutura , Fenótipo , Detecção de Sinal Psicológico , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Hear Res ; 343: 14-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473502

RESUMO

Studies of congenital and early-onset deafness have demonstrated that an absence of peripheral sound-evoked activity in the auditory nerve causes pathological changes in central auditory structures. The aim of this study was to establish whether progressive acquired hearing loss could lead to similar brain changes that would degrade the precision of signal transmission. We used complementary physiologic hearing tests and microscopic techniques to study the combined effect of both magnitude and duration of hearing loss on one of the first auditory synapses in the brain, the endbulb of Held (EB), along with its bushy cell (BC) target in the anteroventral cochlear nucleus. We compared two hearing mouse strains (CBA/Ca and heterozygous shaker-2+/-) against a model of early-onset progressive hearing loss (DBA/2) and a model of congenital deafness (homozygous shaker-2-/-), examining each strain at 1, 3, and 6 months of age. Furthermore, we employed a frequency model of the mouse cochlear nucleus to constrain our analyses to regions most likely to exhibit graded changes in hearing function with time. No significant differences in the gross morphology of EB or BC structure were observed in 1-month-old animals, indicating uninterrupted development. However, in animals with hearing loss, both EBs and BCs exhibited a graded reduction in size that paralleled the hearing loss, with the most severe pathology seen in deaf 6-month-old shaker-2-/- mice. Ultrastructural pathologies associated with hearing loss were less dramatic: minor changes were observed in terminal size but mitochondrial fraction and postsynaptic densities remained relatively stable. These results indicate that acquired progressive hearing loss can have consequences on auditory brain structure, with prolonged loss leading to greater pathologies. Our findings suggest a role for early intervention with assistive devices in order to mitigate long-term pathology and loss of function.


Assuntos
Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Perda Auditiva/patologia , Audição , Sinapses/ultraestrutura , Estimulação Acústica , Fatores Etários , Animais , Limiar Auditivo , Comportamento Animal , Nervo Coclear/fisiopatologia , Núcleo Coclear/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Predisposição Genética para Doença , Audição/genética , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Perda Auditiva/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo
3.
J Comp Neurol ; 521(7): 1510-32, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047723

RESUMO

The relationship between structure and function is an invaluable context with which to explore biological mechanisms of normal and dysfunctional hearing. The systematic and topographic representation of frequency originates at the cochlea, and is retained throughout much of the central auditory system. The cochlear nucleus (CN), which initiates all ascending auditory pathways, represents an essential link for understanding frequency organization. A model of the CN that maps frequency representation in 3D would facilitate investigations of possible frequency specializations and pathologic changes that disturb frequency organization. Toward this goal, we reconstructed in 3D the trajectories of labeled auditory nerve (AN) fibers following multiunit recordings and dye injections in the anteroventral CN of the CBA/J mouse. We observed that each injection produced a continuous sheet of labeled AN fibers. Individual cases were normalized to a template using 3D alignment procedures that revealed a systematic and tonotopic arrangement of AN fibers in each subdivision with a clear indication of isofrequency laminae. The combined dataset was used to mathematically derive a 3D quantitative map of frequency organization throughout the entire volume of the CN. This model, available online (http://3D.ryugolab.com/), can serve as a tool for quantitatively testing hypotheses concerning frequency and location in the CN.


Assuntos
Núcleo Coclear/anatomia & histologia , Imageamento Tridimensional , Estimulação Acústica , Animais , Nervo Coclear/anatomia & histologia , Nervo Coclear/fisiologia , Núcleo Coclear/fisiologia , Eletrofisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos CBA
4.
Neurobiol Aging ; 33(12): 2892-902, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22405044

RESUMO

Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.


Assuntos
Envelhecimento , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Vias Eferentes/fisiologia , Células Ciliadas Auditivas Internas/citologia , Sinapses/ultraestrutura , Estimulação Acústica , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Sinapses/fisiologia
5.
Neurobiol Aging ; 32(12): 2321.e13-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20580130

RESUMO

Age-related synaptic change is associated with the functional decline of the nervous system. It is unknown whether this synaptic change is the cause or the consequence of neuronal cell loss. We have addressed this question by examining mice genetically engineered to over- or underexpress neuregulin-1 (NRG1), a direct modulator of synaptic transmission. Transgenic mice overexpressing NRG1 in spiral ganglion neurons (SGNs) showed improvements in hearing thresholds, whereas NRG1 -/+ mice show a complementary worsening of thresholds. However, no significant change in age-related loss of SGNs in either NRG1 -/+ mice or mice overexpressing NRG1 was observed, while a negative association between NRG1 expression level and survival of inner hair cells during aging was observed. Subsequent studies provided evidence that modulating NRG1 levels changes synaptic transmission between SGNs and hair cells. One of the most dramatic examples of this was the reversal of lower hearing thresholds by "turning-off" NRG1 overexpression. These data demonstrate for the first time that synaptic modulation is unable to prevent age-related neuronal loss in the cochlea.


Assuntos
Envelhecimento/metabolismo , Cóclea/metabolismo , Sinapses/fisiologia , Estimulação Acústica/métodos , Envelhecimento/patologia , Animais , Contagem de Células/métodos , Sobrevivência Celular/fisiologia , Cóclea/inervação , Cóclea/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuregulina-1/genética , Neuregulina-1/fisiologia , Gânglio Espiral da Cóclea/patologia , Sinapses/patologia , Transmissão Sináptica/fisiologia
6.
J Comp Neurol ; 518(12): 2382-404, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20437534

RESUMO

Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6-month-old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10-19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, postsynaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age-dependent fashion.


Assuntos
Implantes Cocleares , Surdez/fisiopatologia , Surdez/terapia , Lateralidade Funcional , Estimulação Acústica , Fatores Etários , Animais , Percepção Auditiva/fisiologia , Gatos , Nervo Coclear/patologia , Nervo Coclear/fisiopatologia , Nervo Coclear/ultraestrutura , Surdez/patologia , Estimulação Elétrica , Potenciais Evocados , Humanos , Microscopia Eletrônica , Reflexo de Sobressalto , Fala , Sinapses/patologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Vesículas Sinápticas/patologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
7.
J Comp Neurol ; 496(3): 335-48, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16566003

RESUMO

Physiological, anatomical, and clinical data have demonstrated interactions between somatosensory and auditory brainstem structures. Spinal nerve projections influence auditory responses, although the nature of the pathway(s) is not known. To address this issue, we injected biotinylated dextran amine into the cochlear nucleus or dorsal root ganglion (DRG) at the second cervical segment (C2). Cochlear nucleus injections retrogradely labeled small ganglion cells in C2 DRG. C2 DRG injections produced anterograde labeling in the external cuneate nucleus, cuneate nucleus, nucleus X, central cervical nucleus, dorsal horn of upper cervical spinal segments, and cochlear nucleus. The terminal field in the cochlear nucleus was concentrated in the subpeduncular corner and lamina of the granule cell domain, where endings of various size and shapes appeared. Examination under an electron microscope revealed that the C2 DRG terminals contained numerous round synaptic vesicles and formed asymmetric synapses, implying depolarizing influences on the target cell. Labeled endings synapsed with the stalk of the primary dendrite of unipolar brush cells, distal dendrites of presumptive granule cells, and endings containing pleomorphic synaptic vesicles. These primary somatosensory projections contribute to circuits that are hypothesized to mediate integrative functions of hearing.


Assuntos
Vias Auditivas/anatomia & histologia , Núcleo Coclear/ultraestrutura , Gânglios Espinais/ultraestrutura , Estimulação Acústica/métodos , Animais , Vias Auditivas/fisiologia , Biotina/análogos & derivados , Biotina/farmacocinética , Vértebras Cervicais , Núcleo Coclear/efeitos dos fármacos , Núcleo Coclear/fisiologia , Dendritos/ultraestrutura , Dextranos/farmacocinética , Gânglios Espinais/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão/métodos , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA