Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 7: 45333, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350010

RESUMO

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Transferases/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , DNA Complementar/metabolismo , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Mutagênese , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interferência de RNA , Plântula/crescimento & desenvolvimento , Transferases/antagonistas & inibidores , Transferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA