Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr J ; 20(1): 51, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092255

RESUMO

BACKGROUND: Children with severe acute malnutrition (SAM) have inadequate levels of fatty acids (FAs) and limited capacity for enteral nutritional rehabilitation. We hypothesized that topical high-linoleate sunflower seed oil (SSO) would be effective adjunctive treatment for children with SAM. METHODS: This study tested a prespecified secondary endpoint of a randomized, controlled, unblinded clinical trial with 212 children with SAM aged 2 to 24 months in two strata (2 to < 6 months, 6 to 24 months in a 1:2 ratio) at Dhaka Hospital of icddr,b, Bangladesh between January 2016 and December 2017. All children received standard-of-care management of SAM. Children randomized to the emollient group also received whole-body applications of 3 g/kg SSO three times daily for 10 days. We applied difference-in-difference analysis and unsupervised clustering analysis using t-distributed stochastic neighbor embedding (t-SNE) to visualize changes in FA levels in blood from day 0 to day 10 of children with SAM treated with emollient compared to no-emollient. RESULTS: Emollient therapy led to systematically higher increases in 26 of 29 FAs over time compared to the control. These effects were driven primarily by changes in younger subjects (27 of 29 FAs). Several FAs, especially those most abundant in SSO showed high-magnitude but non-significant incremental increases from day 0 to day 10 in the emollient group vs. the no-emollient group; for linoleic acid, a 237 µg/mL increase was attributable to enteral feeding and an incremental 98 µg/mL increase (41%) was due to emollient therapy. Behenic acid (22:0), gamma-linolenic acid (18:3n6), and eicosapentaenoic acid (20:5n3) were significantly increased in the younger age stratum; minimal changes were seen in the older children. CONCLUSIONS: SSO therapy for SAM augmented the impact of enteral feeding in increasing levels of several FAs in young children. Further research is warranted into optimizing this novel approach for nutritional rehabilitation of children with SAM, especially those < 6 months. TRIAL REGISTRATION: ClinicalTrials.gov : NCT02616289 .


Assuntos
Desnutrição Aguda Grave , Adolescente , Bangladesh , Criança , Pré-Escolar , Emolientes , Ácidos Graxos , Humanos , Lactente , Óleo de Girassol
2.
Skelet Muscle ; 10(1): 30, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092650

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS: Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS: Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS: In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.


Assuntos
Inibidores Enzimáticos/farmacologia , Metaboloma , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Distrofina/deficiência , Inibidores Enzimáticos/uso terapêutico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Piridínio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA