Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(5): 917-927, 2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32946687

RESUMO

BACKGROUND/AIMS: Glutamine is the most abundant amino acid in the body and has a metabolic role as a precursor for protein, amino sugar and nucleotide synthesis. After glucose, glutamine is the main source of energy in cells and has recently been shown to be an important carbon source for de novo lipogenesis. Glutamine is synthesized by the enzyme glutamine synthetase, a mitochondrial enzyme that is active during adipocyte differentiation suggesting a regulatory role in this process. The aim of our study was therefore to investigate whether glutamine status impacts on the differentiation of adipocytes and lipid droplet accumulation. METHODS: Mouse mesenchymal stem cells (MSCs) were submitted to glutamine deprivation (i.e. glutamine-free adipogenic medium in conjunction with irreversible glutamine synthetase inhibitor, methionine sulfoximine - MSO) during differentiation and their response was compared with MSCs differentiated in glutamine-supplemented medium (5, 10 and 20 mM). Differentiated MSCs were assessed for lipid content using Oil Red O (ORO) staining and gene expression was analysed by qPCR. Intracellular glutamine levels were determined using a colorimetric assay, while extracellular glutamine was measured using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Glutamine deprivation largely abolished adipogenic differentiation and lipid droplet formation. This was accompanied with a reduction in intracellular glutamine concentration, and downregulation of gene expression for classical adipogenic markers including PPARγ. Furthermore, glutamine restriction suppressed isocitrate dehydrogenase 1 (IDH1) gene expression, an enzyme which produces citrate for lipid synthesis. In contrast, glutamine supplementation promoted adipogenic differentiation in a dose-dependent manner. CONCLUSION: These results suggest that the glutamine pathway may have a previously over-looked role in adipogenesis. The underlying mechanism involved the glutamine-IDH1 pathway and could represent a potential therapeutic strategy to treat excessive lipid accumulation and thus obesity.


Assuntos
Adipogenia/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Meios de Cultura , Glutamato-Amônia Ligase/fisiologia , Glutamina/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , PPAR gama/metabolismo , Células-Tronco/metabolismo
2.
Sci Rep ; 8(1): 9628, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941966

RESUMO

Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specific uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the first month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confirmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Suplementos Nutricionais , Mães , Transcrição Gênica/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Mineração de Dados , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Família Multigênica/genética , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA